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PROBABILISTIC
REASONING OVER TIME

Today
N

0 Reading
o AIMA Chapter 15.1-15.2,15.5

1 Goals
1 Particle Filters

o In-class inference practice
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Modeling uncertainty over time

Sometimes, we want to model a dynamic process:
the value of the random variables change over time
Price of a stock
Patient stats, e.g. blood pressure, heart rate, blood
sugar levels
Traffic on California highways
Pollution, humidity, temperature, rain fall, storms

Sensor tracking and detection

Examples of DBN
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J. Hutchins et al. Probabilistic analysis of a large-scale urban traffic sensor data set.




Transition Model

0 The transition model specifies the probability of X, given the

history Xy,

O Markov Assumption: the state variable X, depends on a finite
and fixed subset of X, ,
First order Markov Process: P(X| Xo,.1) = P(X([X.;)
Second order Markov Process: P(X, | Xy, 1) = P(X,| X1, X.2)
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Transition Model

o Stationarity Assumption: the conditional distribution P(X,| X, ;) is

the same for all t

0 Only need to specify one conditional distribution for all edges
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Sensor (emission) model

0 The sensor model specifies the probability of the evidence E,
given the states X, and the evidence E,,

o Sensor Markov Assumption: the evidence E, is independent of
every other random variable given X,

The state encompasses all relevant information for generating the

evidence

Hidden Markov Model

11 A Hidden Markov Model is the simplest type of
DBN

State is represented by a single discrete random
variable
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Filtering

Inference Tasks

Prediction

Smoothing

Approximate Inference in Dynamic BN

o Recall approximate inference algorithms from
previous lecture
Direct sampling, rejection sampling, likelihood weighting

Gibbs sampling

0 Likelihood weighting applied to DBN (with some
modifications) is known as a Particle filter
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Particle Filtering

Likelihood weighting fixes the evidence variables
and samples only the non-evidence variables

Introduces a weight to correct for the fact that we're
sampling from the prior distribution instead of the
posterior distribution

weight = p(e, | Parents(e,)) * p(e,| Parents(e,)) ...

Particle Filtering

Initialize
Draw S particles (i.e. samples) for X, from the prior
distribution p(X,)

Propagate

Propagate each particle forward by sampling a value
Xe4q from p(Xiy; | X))

Weight
Weight each particle by p(e; | X 1=Xp1)
Resample

Generate S new particles by sampling proportional to
the weights. The new particles are unweighted
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Particle Filtering

= Particles: track samples of states rather than an explicit distribution
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Particles: Particles: Particles: (New) Particles:
33) (3,2) (3,2) w=9 (3,2)
(2,3) (2,3) (2,3) w=2 (2,2)
33) (3.2) (3,2) w=9 3,2)
(3,2) (3,1) (3,1) w=4 (2,3)
33) (3,3) (3,3) w=4 33)
(3,2) (3,2) (3,2) w=9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
33) (2,3) (2,3) w=2 (2,3)
(3,3) (3,2) (3,2) w=9 (3,2)
(2,3) (2,2) (2,2) w=4 3,2)




