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PROBABILISTIC 
REASONING OVER TIME 

Today 

¨  Reading 
¤ AIMA Chapter 15.1-15.2, 15.5 

¨  Goals 
¤  Introduce dynamic Bayesian networks 
¤ Forward algorithm 
¤ HW5 Ghostbusters 
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Modeling uncertainty over time 

¨  Sometimes, we want to model a dynamic process: 
the value of the random variables change over time 
¤ Price of a stock 
¤ Patient stats, e.g. blood pressure, heart rate, blood 

sugar levels 
¤ Traffic on California highways 
¤ Pollution, humidity, temperature, rain fall, storms 
¤ Sensor tracking and detection 

How to model a dynamic process? 

¨  Model a dynamic process as a series of time slices 
¨  Each time slice contains a set of random variables 

¤  Evidence variables whose value we observe (Et) 
¤ State variables whose value we don’t observe (Xt) 

¨  Variables within a time slice are connected 
¨  Variables between time slices are connected 
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Examples of DBN 
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J. Hutchins et al. Probabilistic analysis of a large-scale urban traffic sensor data set. 

Examples of DBN 

EM algorithm in our implementation of the the examination
model.

2.1.3 Logistic model
Another alternative is to use a slightly di↵erent model

related to logistic regression [8]:

P (C = 1|u, p) :=
1

1 + exp(�↵̃u � �̃p)
. (3)

The click probability is not a product of probabilities any
longer, but it is still a function of the url and of the position.
The main advantage is that it ensures that the resulting
probability is always between 0 and 1; also the optimization
is much easier since it is an unconstrained and jointly convex
problem.

2.2 Cascade Model
Cascade model [8] di↵ers from the above position models

in that it considers the dependency among urls in a same
search results page and model all clicks and skips simulta-
neously in a session. It assumes that the user views search
results from top to bottom and decides whether to click each
url. Once a click is issued, documents below the clicked re-
sult are not examined regardless of the position. With the
cascade model, each document d, is either clicked with prob-
ability rd (i.e. probability that the document is relevant)
or skipped with probability (1-rd). The cascade model as-
sumes that a user who clicks never comes back, and a user
who skips always continues. A click on the i-th document
indicates: 1. the user must have decided to skip the ranks
above; 2. the user deem the i-th document relevant. The
probability of click on i-th document can thus be expressed
as:

P (Ci = 1) = ri

i�1Y

j=1

(1� rj). (4)

3. DYNAMIC BAYESIAN NETWORK
We now introduce another model which considers the re-

sults set as a whole and takes into account the influence of
the other urls while estimating the relevance of a given url
from click logs. The reason to consider the relevance of other
urls is the following: take for instance a relevant document
in position 3; if both documents in position 1 and 2 are very
relevant, it is likely that this document will have very few
clicks; on the other hand, if the two top documents are irrel-
evant, it will have a lot of clicks. A click model depending
only on the position will not be able to make the distinction
between these two cases. We extend the idea of cascade
model and propose a Dynamic Bayesian Network (DBN)
[11] to model simultaneously the relevance of all documents.

3.1 Model
The Dynamic Bayesian Network that we propose is illus-

trated in figure 1. The sequence is over the documents in
the search result list. For simplicity, we keep only the top
10 documents appearing in the first page of results, which
means that the sequence goes from 1 to 10. The variables
inside the box are defined at the session level, while those
out of the box are defined at the query level. As before, we
assume that the query is fixed.

For a given position i, in addition to the observed vari-
able Ci indicating whether there was a click or not at this

EiEi�1 Ei+1

Ci

Ai Si

au su

Figure 1: The DBN used for clicks modeling. Ci is
the the only observed variable.

position, the following hidden binary variables are defined
to model examination, perceived relevance, and actual rele-
vance, respectively:

• Ei: did the user examine the url?
• Ai: was the user attracted by the url?
• Si: was the user satisfied by the landing page?

The following equations describe the model:

Ai = 1, Ei = 1, Ci = 1 (5a)

P (Ai = 1) = au (5b)

P (Si = 1|Ci = 1) = su (5c)

Ci = 0) Si = 0 (5d)

Si = 1) Ei+1 = 0 (5e)

P (Ei+1 = 1|Ei = 1, Si = 0) = � (5f)

Ei = 0) Ei+1 = 0 (5g)

As in the examination model, we assume that there is a click
if and only if the user looked at the url and was attracted by
it (5a). The probability of being attracted depends only on
the url (5b). Similar to the cascade model, the user scans
the urls linearly from top to bottom until he decides to stop.
After the user clicks and visits the url, there is a certain
probability that he will be satisfied by this url (5c). On the
other hand, if he does not click, he will not be satisfied (5d).
Once the user is satisfied by the url he has visited, he stops
his search (5e). If the user is not satisfied by the current
result, there is a probability 1 � � that the user abandons
his search (5f) and a probability � that the user examines
the next url. In other words, � measures the perseverance of
the user4. If the user did not examine the position i, he will
not examine the subsequent positions (5g). In addition, au

and su have a beta prior. The choice of this prior is natural
because the beta distribution is conjugate to the binomial
distribution. It is clear that some of the assumptions are
not realistic and we discuss in section 8 how to extend them.
However, as shown in the experimental section, this model
can already explain accurately the observed clicks.
4it would be better to define the perseverance � at the user
level, but we simply take the same value for all users.
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Examples of DBN 
S. Kim et al. / BioSystems 75 (2004) 57–65 59

Fig. 2. Graphical view of a dynamic Bayesian network model.

By substituting (4) into (3), we have a dynamic
Bayesian network model described by densities

f(x11, . . . , xnp)

= f1(x1)f2(x2|x1) × · · · × fn(xn|xn−1)

= f1(x1)

n
∏

i=2
g1(xi1|pi−1,1) · · · gp(xip|pi−1,p)

= f1(x1)

p
∏

j=1

{

n
∏

i=2
gj(xij|pi−1,j)

}

.

Hence, a crucial problem for modeling a gene net-
work based on the dynamic Bayesian network is how
to construct the conditional densities gj(xij|pi−1,j). To
construct this density function, we assume a nonpara-
metric additive regression model with Gaussian noise,

xij = mj1(p
(j)
i−1,1) + · · · + mjqj (p

(j)
i−1,qj

) + εij,

where εij depends independently and normally on
mean 0 and variance σ2j . That is, gj(xij|pi−1,j) is
a density of Gaussian distribution. Here mjk(·) is a
smooth function from R to R and can be expressed
by using the linear combination of basis functions

mjk(p
(j)
i−1,k) =

Mjk
∑

m=1
γ

(j)
mkb

(j)
mk(p

(j)
i−1,k), k = 1, . . . , qj,

where γ
(j)
1k , . . . , γ

(j)
Mjkk

are coefficient parameters and

{b(j)
1k (·), . . . , b

(j)
Mjkk

(·)} is the prescribed set of basis
functions. Then we define a dynamic Bayesian net-
work and nonparametric regression model of the form

f(x11, . . . , xnp; θG) = f1(x1)

×
p

∏

j=1





n
∏

i=2

1
√

2πσ2j

exp

{

−
(xij − µ(pi−1,j))

2

2σ2j

}



 ,

where θG is the parameter vector included in the model
and µ(pi−1,j) = mj1(p

(j)
i−1,1) + · · · + mjqj (p

(j)
i−1,qj

).
When jth gene has no parent genes, µ(pi−1,j) is re-
sulted in the constant µj .
We assume f1(x1) = g1(x11)×· · ·×g1(x1p) and the

joint density f(x11, . . . , xnp; θG) can then be rewritten
as

f(x11, . . . , xnp; θG)

=
p

∏

j=1

{

g1(x1j)

n
∏

i=2
gj(xij|pi−1,j; θj)

}

=
p

∏

j=1

n
∏

i=1
gj(xij|pi−1,j; θj), (5)

where p0j = ∅. Thus, gj(xij|pi−1,j; θj) represents the
local structure of jth gene and its parent genes.

Transition Model 

¨  The transition model specifies the probability of Xt given the 
history X0:t-1 

¨  Markov Assumption: the state variable Xt depends on a finite 
and fixed subset of X0:t-1 

¤  First order Markov Process: P(Xt|X0:t-1) = P(Xt|Xt-1) 

¤  Second order Markov Process: P(Xt|X0:t-1) = P(Xt|Xt-1,Xt-2) 

Xt–2 Xt–1 Xt(a)

(b)

Xt+1 Xt+2

Xt–2 Xt–1 Xt Xt+1 Xt+2
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Transition Model 

¨  Stationarity Assumption: the conditional distribution P(Xt|Xt-1) is 
the same for all t 

¨  Only need to specify one conditional distribution for all edges 

Sensor (emission) model 

¨  The sensor model specifies the probability of the evidence Et 
given the states X0:t and the evidence E0:t-1 

¨  Sensor Markov Assumption: the evidence Et is independent of 
every other random variable given Xt 

¤  The state encompasses all relevant information for generating the 
evidence 
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Hidden Markov Model 

¨  A Hidden Markov Model is the simplest type of 
DBN 
¤ State is represented by a single discrete random 

variable 
 

R2 R3 

U2 U3 

R1 

U1 

R0 

Inference Tasks 

¨  Filtering: P(Xt|e1:t) 
¤ Decision making in the here and now 

¨  Prediction: P(Xt+k|e1:t) 
¤ Trying to plan the future 

¨  Smoothing: P(Xk|e1:t) for 0 ≤ k < t 
¤ Gives a better (smoother) estimate than filtering by 

taking into account future evidence 
¨  Most Likely Explanation (MLE): argmax P(x1:t|e1:t) 

¤ e.g., speech recognition, sketch recognition 
x1:t 
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Filtering: P(Xt|e1:t) 

¨  A recursive state estimation algorithm 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 

Filtering: P(Xt|e1:t) 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 

¨  Step Zero: Assume we already have p(Xt-1|e1:t-1) 
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Filtering: P(Xt|e1:t) 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 

¨  Step One: Update from state Xt-1 to Xt 

Filtering: P(Xt|e1:t) 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 

¨  Step Two: Then incorporate the new evidence Et 
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Filtering Example 

Rain1 Rain2 Rain3 

U1 U2 U3 

p(R0) = <0.5, 0.5> 

Rt-1 p(Rt | Rt-1) 

T 0.7 

F 0.3 

Rt p(Ut| Rt) 

T 0.9 

F 0.2 

p(X
t

|e1:t) = p(X
t

|e1:t�1, et)

/ p(e
t

|X
t

, e1:t�1) p(Xt

|e1:t�1)

= p(e
t

|X
t

) p(X
t

|e1:t�1)

= p(e
t

|X
t

)
X

Xt�1

p(X
t

, X
t�1|e1:t�1)

= p(e
t

|X
t

)
X

Xt�1

p(X
t

|X
t�1, e1:t�1) p(Xt�1|e1:t�1)

= p(e
t

|X
t

)
X

Xt�1

p(X
t

|X
t�1) p(Xt�1|e1:t�1)

p(X
t

|e1:t) = p(e
t

|X
t

)
X

Xt�1

p(X
t

|X
t�1) p(Xt�1|e1:t�1)

p(X
k

|e1:t) = p(X
k

|e1:k, ek+1:t)

/ p(X
k

, e
k+1:t|e1:k)

= p(e
k+1:t|Xk

, e1:k) p(Xk

|e1:k)
= p(e

k+1:t|Xk

) p(X
k

|e1:k)

p(e
k+1:t|Xk

) =
X

Xk+1

p(e
k+1:t, Xk+1|Xk

)

=
X

Xk+1

p(e
k+1:t|Xk+1) p(Xk+1|Xk

)

=
X

Xk+1

p(e
k+1|Xk+1) p(ek+2:t|Xk+1) p(Xk+1|Xk

)

6

p(X = x, Y = y|Z = z) = p(X = x|Z = z) · p(Y = y|Z = z)

<
0.2

0.2 + 0.3
,

0.3

0.2 + 0.3
>=< 0.4, 0.6 >

p(X,Y ) / p(X|Y )

p(W,T ) =<
20

50
,
5

50
,
10

50
,
15

50
>=< .40, .10, .20, .30 >

p(j,m, a,¬b,¬e) = p(j|m, a,¬b,¬e)p(m|a,¬b,¬e)p(a|¬b,¬e)p(b|¬e)p(e)
= p(j|a)p(m|a)p(a|¬b,¬e)p(b)p(e)
= 0.9 · 0.7 · 0.001 · 0.999 · 0.998

p(b|j,m) /
X

e

X

a

p(b, j,m, e, a)

=
X

e

X

a

p(b) · p(e) · p(j|a) · p(m|a) · p(a|b, e)

= p(b)
X

e

p(e)
X

a

p(j|a) · p(m|a) · p(a|b, e)

p(B|j,m) = ↵ p(B)
X

e

p(e)
X

a

p(a|B, e) p(j|a) p(m|a)

= ↵ f1(B)
X

e

f2(e)
X

a

f3(A,B,E) f4(A) f5(A)

= ↵ f1(B)
X

e

f2(e) f6(B,E)

= ↵ f1(B) f7(B)

/

5

Prediction 

¨  Compute p(Xt+k | e1:t) for k > 0 
 
¨  Given the equations for filtering, can you figure out 

how to do prediction? 
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Inference Tasks 

¨  Filtering: P(Xt|e1:t) 
¤ Decision making in the here and now 

¨  Prediction: P(Xt+k|e1:t) 
¤ Trying to plan the future 

¨  Smoothing: P(Xk|e1:t) for 0 ≤ k < t 
¤ Gives a better (smoother) estimate than filtering by 

taking into account future evidence 
¨  Most Likely Explanation (MLE): argmax P(x1:t|e1:t) 

¤ e.g., speech recognition, sketch recognition 
x1:t 

The Backward Algorithm 

¨  A recursive state estimation algorithm 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 
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The Backward Algorithm 

¨  Step Zero: Assume we have p(Xk+1|ek+2:t) 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 

The Backward Algorithm 

¨  Step One: Incorporate evidence via p(ek+1|Xk+1) 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 
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The Backward Algorithm 

¨  Step Two: Update the state via p(Xk+1|Xk) 

X1 Xk-1 Xk Xk+1 Xt-1 Xt 

e1 ek-1 ek ek+1 et-1 et 

… 

Smoothing Example 

Rain1 Rain2 Rain3 

U1 U2 U3 

p(R0) = <0.5, 0.5> 

Rt-1 p(Rt | Rt-1) 

T 0.7 

F 0.3 

Rt p(Ut| Rt) 

T 0.9 

F 0.2 
P(r1|u1) P(r2|u1, u2) P(r1|u1 ,u2) 

0.818 0.883 ? 
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Most Likely Explanation 

¨  Find the state sequence that makes the observed 
evidence sequence most likely 

   argmax P(X1:t|e1:t) 
 
¨  Recursive formulation: 

¤ The most likely state sequence for X1:t is the most likely 
state sequence for X1:t-1 followed by the transition to Xt 

¤ Equivalent to Filtering algorithm except summation 
replaced with max 

¤ Called the Viterbi Algorithm 

X1:t 


