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PROBABILISTIC
REASONING OVER TIME

Today
N

0 Reading
o AIMA Chapter 15.1-15.2,15.5

o Goals
1 Introduce dynamic Bayesian networks

o Forward algorithm
o HW5 Ghostbusters




Modeling uncertainty over time

Sometimes, we want to model a dynamic process:
the value of the random variables change over time
Price of a stock

Patient stats, e.g. blood pressure, heart rate, blood
sugar levels

Traffic on California highways
Pollution, humidity, temperature, rain fall, storms

Sensor tracking and detection

How to model a dynamic process?

Model a dynamic process as a series of time slices

Each time slice contains a set of random variables
Evidence variables whose value we observe (E,)

State variables whose value we don’t observe (X,)

Variables within a time slice are connected

Variables between time slices are connected
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Examples of DBN

J. Hutchins et al. Probabilistic analysis of a large-scale urban traffic sensor data set.

Examples of DBN
o

&

the the only observed variable.

Track: Data Mining / Session: Click Models

e F;: did the user examine the url?
e A;: was the user attracted by the url?
e S;: was the user satisfied by the landing page?

Figure 1: The DBN used for clicks modeling. C; is
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Examples of DBN
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Fig. 2. Graphical view of a dynamic Bayesian network model.

Transition Model

0 The transition model specifies the probability of X, given the

history Xy,

O Markov Assumption: the state variable X, depends on a finite

and fixed subset of X, ,
First order Markov Process: P(X| Xo,.1) = P(X;[X.;)
Second order Markov Process: P(X, | Xy, 1) = P(X,| X1, X.2)
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Transition Model

o Stationarity Assumption: the conditional distribution P(X,| X, ;) is

the same for all t

0 Only need to specify one conditional distribution for all edges

Sensor (emission) model

0 The sensor model specifies the probability of the evidence E,
given the states X, and the evidence E.,

o Sensor Markov Assumption: the evidence E, is independent of
every other random variable given X,

The state encompasses all relevant information for generating the

evidence




Hidden Markov Model

A Hidden Markov Model is the simplest type of
DBN

State is represented by a single discrete random
variable

Inference Tasks

Filtering: P(X,| e;,)

Decision making in the here and now
Prediction: P(X,,, | e;,)

Trying to plan the future
Smoothing: P(X, | e, ) for 0 < k <t

Gives a better (smoother) estimate than filtering by
taking into account future evidence

Most Likely Explanation (MLE): argmax P(x, | e, )

Xyt

e.d., speech recognition, sketch recognition
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Filtering: P(X,| e, )

A recursive state estimation algorithm

Filtering: P(X,| e )

Step Zero: Assume we already have p(X, ;e )
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Filtering: P(X,| e )

Step One: Update from state X, ; to X,

Filtering: P(X,| e )

Step Two: Then incorporate the new evidence E,




Filtering Example

p(Ry) = <0.5, 0.5>

(Rain)-

Rain, in, Raing

Reti | P(R | Ry)

T 0.7

()

R. | p(UdR)

T 0.9

F 0.2 p(Xeler) < pled]| Xy) Z P(X| Xi—1) p(Xi—1ler:i—1)

Xi—1
Prediction

o Compute p(X,, | e, fork>0

o1 Given the equations for filtering, can you figure out

how to do prediction?
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Inference Tasks

0 Filtering: P(X,| e, ,)

Decision making in the here and now
o Prediction: P(X,,, | e,

Trying to plan the future

Gives a better (smoother) estimate than filtering by
taking into account future evidence

1 Most Likely Explanation (MLE): argmax P(x, | e,)

Xyt

e.g., speech recognition, sketch recognition

The Backward Algorithm

01 A recursive state estimation algorithm
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The Backward Algorithm

CHOR®

0 Step Zero: Assume we have p(X, ., |e. o)

(=

The Backward Algorithm

CHOR®

1 Step One: Incorporate evidence via p(e, ;| X,41)
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The Backward Algorithm

OSOT ONG
® ©OW

oNo

1 Step Two: Update the state via p(X, ;| X,)

Smoothing Example

p(Ry) = <0.5, 0.5>

Rain, Rain, Raing
Reti | P(R | Ry)
T 0.7
003 @
Re | p(UdR)
T 0.9 P(r1 |U]) P(I’2|U], Uz) P(I’1 |U1 :U2)
F 0.2 0.818 0.883 2
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Most Likely Explanation

Find the state sequence that makes the observed
evidence sequence most likely

argmax P(X, | e;,)
X]:t

Recursive formulation:

The most likely state sequence for X, is the most likely
state sequence for X, , followed by the transition to X,

Equivalent to Filtering algorithm except summation
replaced with max

Called the Viterbi Algorithm
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