PROBABILISTIC REASONING OVER TIME

Today

\square Reading

- AIMA Chapter 15.1-15.2, 15.5
\square Goals
\square Introduce dynamic Bayesian networks
\square Forward algorithm
\square HW5 Ghostbusters

Modeling uncertainty over time

Sometimes, we want to model a dynamic process: the value of the random variables change over time
\square Price of a stock
\square Patient stats, e.g. blood pressure, heart rate, blood sugar levels

- Traffic on California highways
\square Pollution, humidity, temperature, rain fall, storms
\square Sensor tracking and detection

How to model a dynamic process?

\square Model a dynamic process as a series of time slices
Each time slice contains a set of random variables
\square Evidence variables whose value we observe $\left(E_{t}\right)$
\square State variables whose value we don't observe $\left(X_{t}\right)$

Variables within a time slice are connected
Variables between time slices are connected

Examples of DBN

J. Hutchins et al. Probabilistic analysis of a large-scale urban traffic sensor data set.

Examples of DBN

Track: Data Mining / Session: Click Models

- E_{i} : did the user examine the url?
- A_{i} : was the user attracted by the url?
- S_{i} : was the user satisfied by the landing page?

Figure 1: The DBN used for clicks modeling. C_{i} is the the only observed variable.

Examples of DBN

Fig. 2. Graphical view of a dynamic Bayesian network model.

Transition Model

The transition model specifies the probability of X_{t} given the history $\mathrm{X}_{\text {0:t-1 }}$
\square Markov Assumption: the state variable X_{t} depends on a finite and fixed subset of $\mathrm{X}_{0: t-1}$
\square First order Markov Process: $P\left(X_{t} \mid X_{0:-1}\right)=P\left(X_{t} \mid X_{t-1}\right)$
\square Second order Markov Process: $P\left(X_{t} \mid X_{0:-1}\right)=P\left(X_{t} \mid X_{t-1}, X_{t-2}\right)$
(a)

(b)

Transition Model

\square Stationarity Assumption: the conditional distribution $P\left(X_{t} \mid X_{t-1}\right)$ is the same for all t
\square Only need to specify one conditional distribution for all edges

Sensor (emission) model

\square The sensor model specifies the probability of the evidence E_{t} given the states $X_{0: t}$ and the evidence $E_{0: t-1}$
\square Sensor Markov Assumption: the evidence E_{t} is independent of every other random variable given X_{t}

- The state encompasses all relevant information for generating the evidence

Hidden Markov Model

\square A Hidden Markov Model is the simplest type of DBN
\square State is represented by a single discrete random variable

Inference Tasks

\square Filtering: $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{e}_{1: t}\right)$
\square Decision making in the here and now
Prediction: $P\left(X_{t+k} \mid e_{1: t}\right)$
\square Trying to plan the future
Smoothing: $P\left(X_{k} \mid e_{1: t}\right)$ for $0 \leq k<t$
\square Gives a better (smoother) estimate than filtering by taking into account future evidence
\square Most Likely Explanation (MLE): $\underset{x_{1: t}}{\operatorname{argmax}} P\left(x_{1: t} \mid e_{1: t}\right)$
\square e.g., speech recognition, sketch recognition

Filtering: $P\left(X_{t} \mid e_{1: t}\right)$
\square A recursive state estimation algorithm

Filtering: $P\left(X_{t} \mid e_{1: t}\right)$

Step Zero: Assume we already have $p\left(X_{t-1} \mid e_{1: t-1}\right)$

Filtering: $P\left(X_{t} \mid e_{1: t}\right)$

\square Step One: Update from state X_{t-1} to X_{t}

Filtering: $P\left(X_{t} \mid e_{1: t}\right)$

Step Two: Then incorporate the new evidence E_{t}

Filtering Example

$$
\left.p\left(R_{0}\right)=<0.5,0.5\right\rangle
$$

R_{t-1}	$p\left(R_{t} \mid R_{t-1}\right)$
T	0.7
F	0.3

R_{t}	$p\left(U_{t} \mid R_{t}\right)$
T	0.9
F	0.2

$$
p\left(X_{t} \mid e_{1: t}\right) \propto p\left(e_{t} \mid X_{t}\right) \sum_{X_{t-1}} p\left(X_{t} \mid X_{t-1}\right) p\left(X_{t-1} \mid e_{1: t-1}\right)
$$

Prediction

\square Compute $\mathrm{p}\left(\mathrm{X}_{\mathrm{t}+\mathrm{k}} \mid \mathrm{e}_{1: \mathrm{t}}\right)$ for $\mathrm{k}>0$
\square Given the equations for filtering, can you figure out how to do prediction?

Inference Tasks

Filtering: $P\left(X_{t} \mid e_{1: t}\right)$

- Decision making in the here and now
\square Prediction: $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}+\mathrm{k}} \mid \mathrm{e}_{1: t}\right)$
\square Trying to plan the future
\square Smoothing: $P\left(X_{k} \mid e_{1: t}\right)$ for $0 \leq k<t$
- Gives a better (smoother) estimate than filtering by taking into account future evidence
Most Likely Explanation (MLE): $\underset{\mathbf{x}_{1: t}}{\operatorname{argmax}} P\left(\mathrm{x}_{1: t} \mid \mathrm{e}_{1: t}\right)$
\square e.g., speech recognition, sketch recognition

The Backward Algorithm

A recursive state estimation algorithm

The Backward Algorithm

Step Zero: Assume we have $p\left(X_{k+1} \mid e_{k+2: t}\right)$

The Backward Algorithm

Step One: Incorporate evidence via $p\left(e_{k+1} \mid X_{k+1}\right)$

The Backward Algorithm

Step Two: Update the state via $p\left(X_{k+1} \mid X_{k}\right)$

Smoothing Example

$$
p\left(R_{0}\right)=<0.5,0.5>
$$

R_{t-1}	$p\left(R_{t} \mid R_{t-1}\right)$
T	0.7
F	0.3

R_{t}	$p\left(U_{t} \mid R_{t}\right)$
T	0.9
F	0.2

Most Likely Explanation

Find the state sequence that makes the observed evidence sequence most likely

$$
\underset{X_{1: t}}{\operatorname{argmax}} P\left(X_{1: t} \mid e_{1: t}\right)
$$

Recursive formulation:
\square The most likely state sequence for $X_{1: t}$ is the most likely state sequence for $X_{1: t-1}$ followed by the transition to X_{t}
\square Equivalent to Filtering algorithm except summation replaced with max
\square Called the Viterbi Algorithm

