

- Sometimes, we want to model a dynamic process: the value of the random variables change over time
 - Price of a stock
 - Patient stats, e.g. blood pressure, heart rate, blood sugar levels
 - Traffic on California highways
 - Pollution, humidity, temperature, rain fall, storms
 - Sensor tracking and detection

Stationarity Assumption: the conditional distribution P(Xt | Xt-1) is the same for all t Only need to specify one conditional distribution for all edges

Most Likely Explanation

Find the state sequence that makes the observed evidence sequence most likely

$$\operatorname{argmax}_{X_{1:t}} P(X_{1:t} | e_{1:t})$$

- □ Recursive formulation:
 - The most likely state sequence for X_{1:t} is the most likely state sequence for X_{1:t-1} followed by the transition to X_t
 - Equivalent to Filtering algorithm except summation replaced with max
 - Called the Viterbi Algorithm