

Gibbs Sampling

- Analogous to a local search algorithm where we make local modifications to our current state
 - Initial state = random assignment of non-evidence variables
 - States = complete assignment of values to variables
 - Transition = sample a new value for each variable in turn

Draw state space for WetGrass example on board

Gibbs Sampling

- Analogous to a local search algorithm where we make local modifications to our current state
 - Initial state = random assignment of non-evidence variables
 - States = complete assignment of values to variables
 - Transition = sample a new value for each variable in turn
- Each step is recorded as a sample
- In the limit, the probability of being in a state is proportional to that state's posterior probability

Gibbs Sampling

- Gibbs sampling is an instance of a more general class of algorithms known as Markov Chain Monte Carlo (MCMC) algorithms
 - Note the use of the phrase "Markov chain" which we saw an example of earlier
- Other methods you might hear mentioned
 - Metropolis-Hastings (a generalization of Gibbs sampling)
 - Variational method
 - Belief propagation

- Sometimes, we want to model a dynamic process: the value of the random variables change over time
 - Price of a stock
 - Patient stats, e.g. blood pressure, heart rate, blood sugar levels
 - Traffic on California highways
 - Pollution, humidity, temperature, rain fall, storms
 - Sensor tracking and detection

- Suppose we also know that if Tracy works the late shift one night she is less likely to work the late shift the next night.
- □ How does this change the model?

- □ Model a dynamic process as a series of time slices
- □ Each time slice contains a set of random variables
 - We observe the value of some random variables called the evidence. Often denoted as E_t
 - We don't observe the value of some random variables called the state. Often denoted as X_t

