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APPROXIMATE INFERENCE
IN BAYESIAN NETWORKS

Today
s
0 Reading
0 AIMA 14.4-14.5
o (AIMA Chapter 15.1-15.2, 15.5)

o Goals
1 Direct Sampling
1 Rejection Sampling
1 Likelihood Weighting

1 (Intfroduce Dynamic Bayesian Networks)




Approximate Inference

Analogous to uninformed /informed search
algorithms that use an incremental formulation
Direct sampling
Rejection sampling
Likelihood weighting

Analogous to local search algorithms that use a
complete-state formulation and make local
modifications

Gibbs sampling (special case of MCMC methods)

Lecture proceeds on whiteboard!
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Gibbs Sampling

Analogous to a local search algorithm where we
make local modifications to our current state
Initial state = random assignment of non-evidence variables
States = complete assignment of values to variables

Transition = sample a new value for each variable in turn

Draw state space for WetGrass example on board

Gibbs Sampling

Analogous to a local search algorithm where we
make local modifications to our current state
Initial state = random assignment of non-evidence variables
States = complete assignment of values to variables
Transition = sample a new value for each variable in turn

Each step is recorded as a sample

In the limit, the probability of being in a state is

proportional to that state’s posterior probability
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Gibbs Sampling

Gibbs sampling is an instance of a more general class
of algorithms known as Markov Chain Monte Carlo

(MCMC) algorithms

Note the use of the phrase “Markov chain” which we saw an
example of earlier

Other methods you might hear mentioned
Metropolis-Hastings (a generalization of Gibbs sampling)
Variational method

Belief propagation
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Modeling uncertainty over time

Sometimes, we want to model a dynamic process:
the value of the random variables change over time
Price of a stock

Patient stats, e.g. blood pressure, heart rate, blood
sugar levels

Traffic on California highways
Pollution, humidity, temperature, rain fall, storms

Sensor tracking and detection

Modeling uncertainty over time

Tracy got a new job working at the Coop. She works
the late shift and doesn’t get off until 2am. When she
works the late shift, | often observe her eyes are red
the next day. But sometimes she stays up late doing
homework, and her eyes are red anyways.

What are questions we might be interested in asking?

How can we model this domain as a Bayesian network?
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Modeling uncertainty over time

Suppose we also know that if Tracy works the late
shift one night she is less likely to work the late shift
the next night.

How does this change the model?

States and Evidence

Model a dynamic process as a series of time slices

Each time slice contains a set of random variables

We observe the value of some random variables called
the evidence. Often denoted as E,

We don’t observe the value of some random variables
called the state. Often denoted as X,
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Transition Model

0 We're often interested in reasoning about the state variables

X, given the history X,

O Markov Assumption: the state variable X, depends on a
bounded subset of X, ,
First order Markov Process: P(X| Xo,.1) = P(X([X.;)
Second order Markov Process: P(X, | Xy, 1) = P(X,| X1, X.2)
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Transition Model

0 We're often interested in reasoning about the state variables

X, given the history X,

o Stationarity Assumption: the conditional distribution P(X,| X, ;) is
the same for all t

Need to specify only one conditional distribution
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Sensor (emission) model

01 The state variables are responsible for generating (emitting)
the evidence variables

0 Sensor Markov Assumption: the evidence at time t is
independent of every other random variable given the state at

time t

As a result, your state should encompass all relevant information for

specifying the evidence

Hidden Markov Model

01 Hidden Markov Models involve three things:
Transition model: P(X,| X, ;)
Emission (evidence) model: P(E,| X))
Prior probability: P(X)
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Inference Tasks

Filtering: P(X,| e;,)

Decision making in the here and now
Prediction: P(X,,, | e;,)

Trying to plan the future
Smoothing: P(X, | e, ) for 0 < k <t

Gives a better (smoother) estimate than filtering by
taking into account future evidence

Most Likely Explanation (MLE): argmax P(x, | e, )

Xyt

e.g., speech recognition, sketch recognition
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