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APPROXIMATE INFERENCE 
IN BAYESIAN NETWORKS 

Today 

¨  Reading 
¤ AIMA 14.4 – 14.5 
¤  (AIMA Chapter 15.1-15.2, 15.5) 
 

¨  Goals 
¤ Direct Sampling 
¤ Rejection Sampling 
¤ Likelihood Weighting 
¤  (Introduce Dynamic Bayesian Networks) 
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Approximate Inference 

¨  Analogous to uninformed/informed search 
algorithms that use an incremental formulation 
¤ Direct sampling 
¤ Rejection sampling 
¤ Likelihood weighting 
 

¨  Analogous to local search algorithms that use a 
complete-state formulation and make local 
modifications 
¤ Gibbs sampling (special case of MCMC methods) 

Lecture proceeds on whiteboard! 
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Wet Grass Example 
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Gibbs Sampling 

¨  Analogous to a local search algorithm where we 
make local modifications to our current state 
¤  Initial state = random assignment of non-evidence variables 

¤  States = complete assignment of values to variables 

¤  Transition = sample a new value for each variable in turn 

Draw state space for WetGrass example on board 

Gibbs Sampling 

¨  Analogous to a local search algorithm where we 
make local modifications to our current state 
¤  Initial state = random assignment of non-evidence variables 

¤  States = complete assignment of values to variables 

¤  Transition = sample a new value for each variable in turn 

¨  Each step is recorded as a sample 

¨  In the limit, the probability of being in a state is 
proportional to that state’s posterior probability 
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Gibbs Sampling 

¨  Gibbs sampling is an instance of a more general class 
of algorithms known as Markov Chain Monte Carlo 
(MCMC) algorithms 
¤ Note the use of the phrase “Markov chain” which we saw an 

example of earlier 

¨  Other methods you might hear mentioned 

¤ Metropolis-Hastings (a generalization of Gibbs sampling) 

¤ Variational method 

¤  Belief propagation 

Dynamic Bayesian Networks 
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Modeling uncertainty over time 

¨  Sometimes, we want to model a dynamic process: 
the value of the random variables change over time 
¤ Price of a stock 
¤ Patient stats, e.g. blood pressure, heart rate, blood 

sugar levels 
¤ Traffic on California highways 
¤ Pollution, humidity, temperature, rain fall, storms 
¤ Sensor tracking and detection 

Modeling uncertainty over time 

¨  Tracy got a new job working at the Coop. She works 
the late shift and doesn’t get off until 2am. When she 
works the late shift, I often observe her eyes are red 
the next day. But sometimes she stays up late doing 
homework, and her eyes are red anyways. 

¨  What are questions we might be interested in asking? 
¨  How can we model this domain as a Bayesian network? 
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¨  Suppose we also know that if Tracy works the late 
shift one night she is less likely to work the late shift 
the next night. 
 

¨  How does this change the model? 

Modeling uncertainty over time 

States and Evidence 

¨  Model a dynamic process as a series of time slices 
¨  Each time slice contains a set of random variables 

¤ We observe the value of some random variables called 
the evidence. Often denoted as Et 

¤ We don’t observe the value of some random variables 
called the state. Often denoted as Xt 
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Transition Model 

¨  We’re often interested in reasoning about the state variables 
Xt given the history X0:t-1 

¨  Markov Assumption: the state variable Xt depends on a 
bounded subset of X0:t-1 

¤  First order Markov Process: P(Xt|X0:t-1) = P(Xt|Xt-1) 

¤  Second order Markov Process: P(Xt|X0:t-1) = P(Xt|Xt-1,Xt-2) 

Xt–2 Xt–1 Xt(a)

(b)

Xt+1 Xt+2

Xt–2 Xt–1 Xt Xt+1 Xt+2

Transition Model 

¨  We’re often interested in reasoning about the state variables 
Xt given the history X0:t-1 

¨  Stationarity Assumption: the conditional distribution P(Xt|Xt-1) is 
the same for all t 
¤  Need to specify only one conditional distribution 
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Sensor (emission) model 

¨  The state variables are responsible for generating (emitting) 
the evidence variables 

¨  Sensor Markov Assumption: the evidence at time t is 
independent of every other random variable given the state at 
time t 
¤  As a result, your state should encompass all relevant information for 

specifying the evidence 

Hidden Markov Model 

¨  Hidden Markov Models involve three things: 
¤  Transition model: P(Xt|Xt-1) 
¤  Emission (evidence) model: P(Et|Xt) 
¤  Prior probability: P(X0)  

X2 Xt-1 Xt 

E2 Et-1 Et 

… X1 

E1 

X0 
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Inference Tasks 

¨  Filtering: P(Xt|e1:t) 
¤ Decision making in the here and now 

¨  Prediction: P(Xt+k|e1:t) 
¤ Trying to plan the future 

¨  Smoothing: P(Xk|e1:t) for 0 ≤ k < t 
¤ Gives a better (smoother) estimate than filtering by 

taking into account future evidence 
¨  Most Likely Explanation (MLE): argmax P(x1:t|e1:t) 

¤ e.g., speech recognition, sketch recognition 
x1:t 


