SUPPORT VECTOR MACHINES

Today

\square Reading

- AIMA 18.9
\square Goals
\square (Naïve Bayes classifiers)
\square Support vector machines

Support Vector Machines (SVMs)

\square SVMs are probably the most popular off-the-shelf classifier!

Software Packages
\square LIBSVM (LIBLINEAR) - on the Resources page \square SVM-Light

Linearly Separable

Support Vector Machines

A support vector machine (SVM) is a linear classifier that finds the decision boundary btw. two classes that is maximally far from any point in the training set
\square The margin is the distance from the decision boundary to the closest data point
\square The support vectors are a subset of the training examples that fully determine the decision boundary

What defines a hyperplane?

What defines a hyperplane?

A hyperplane is defined by:A vector w
\square Perpendicular to the hyperplane

- Often called the "weight" vector
\square A scalar b
\square Selects the hyperplane that is distance b from the origin from among all possible hyperplanes

How do we classify an example?

$$
\begin{gathered}
D=\left\{\left(x_{i}, y_{i}\right) \mid i=1 \ldots N\right\} \\
y_{i} \in\{-1,1\}
\end{gathered}
$$

$w^{\boldsymbol{\top}} x+b=0 \quad x$ on the decision boundary $w^{\top} x+b<0 \quad x$ "below" the decision boundary $w^{\top} x+b>0 \quad x$ "above" the decision boundary

$$
g\left(x_{i}\right)=\operatorname{sign}\left(w^{\boldsymbol{\top}} x+b\right)
$$

The hyperplane that maximizes the margin

\square We know how to specify a hyperplane (w and b).
\square Given the hyperplane, we know how to predict.
\square But how do we find the hyperplane with the maximum margin?

(Derivation on board)

Solving the Optimization Problem

$$
\min _{w, b} \frac{1}{2}\|w\|^{2} \text { such that } y^{(i)}\left(w^{\top} x^{(i)}+b\right) \geq 1 \quad \forall i
$$

- Need to optimize a quadratic function subject to linear constraints
- Quadratic optimization problems are a well-known class of mathematical programming problem and many algorithms exist for solving them
- The solution involves constructing a dual problem where a Lagrange multiplier (a scalar value) is associated with every constraint in the primary problem

Solving the Optimization Problem

$\min _{w, b} \frac{1}{2}\|w\|^{2}$ such that $y^{(i)}\left(w^{\top} x^{(i)}+b\right) \geq 1 \quad \forall i$
$\left.\max _{\substack{\text { Lagrange } \\ \text { multipliers }}}^{\min _{w, b}} \frac{1}{2}\|w\|^{2}-\sum_{i=1}^{\downarrow_{N}} \alpha_{i}\left[y^{(i)}\left(w^{\top} x^{(i)}+b\right)-1\right] \quad{ }_{\downarrow}\right]$ Dual

$$
\max _{\alpha} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} x^{(i)} x^{(j)}
$$

$$
\text { subject to } \alpha_{i} \geq 0 \text { and } \sum_{i} \alpha_{i} y^{(i)}=0
$$

Solving the Optimization Problem

\square The solution has the form:

$$
w=\sum_{i=1}^{N} \alpha_{i} y^{(i)} x^{(i)} \text { and } b=y^{(i)}-w^{\boldsymbol{\top}} x^{(i)} \text { for any } x^{(i)} \text { s.t. } \alpha_{i} \neq 0
$$

\square Each non-zero alpha indicates corresponding x_{i} is a support vector
The classifying function has the form: $g\left(x_{i}\right)=\operatorname{sign}\left(\sum_{i} \alpha_{i} y^{(i)} x^{(i)} x+b\right)$
Relies on an inner product between the test point x and the support vectors X_{i}

Soft-margin Classification

If the training data is not linearly separable, slack variables ξ_{i} can be added to allow misclassification of difficult or noisy examples.

Still, try to minimize training set errors, and to place hyperplane "far" from each class (large margin)

How many support vectors?

\square Determined by alphas in optimization
\square Typically only a small proportion of the training data

The number of support vectors determines the run time for prediction

How fast are SVMs?

Training

- Time for training is dominated by the time for solving the underlying quadratic programming problem
- Slower than Naïve Bayes
- Non-linear SVMs are worse

Testing (Prediction)

- Fast - as long as we don't have too many support vectors

Multi-Iabel classification

SVMs are inherently two-class classifiers
\square Given C classes, common techniques are:
\square One-versus-all

- Train C different SVMs where each SVM learns one class versus all the other classes
\square One-versus-one
- Train C(C-1)/2 SVMs where each SVM learns to distinguish one class from another

Multi-class SVMs
Transductive SVMs

Linear SVMs Summary

The classifier is a decision boundary (separating hyperplane)
\square Most "important" training points are support vectors which define the hyperplane
\square Quadratic optimization algorithms can identify which training points are support vectors (vectors with non-zero Lagrange multipliers)
\square In the dual formation and in classifying an example, the training points appear only inside inner products

Non-linear SVMs

\square General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel" trick

The linear classifier relies on an inner product between vectors $x_{i}{ }^{\top} x_{i}$

$$
g\left(x_{i}\right)=\operatorname{sign}\left(\sum_{i} \alpha_{i} y^{(i)} x^{(i)} x+b\right)
$$

\square If every example is mapped into a high-dimensional space via some transformation $\Phi: \mathbf{x} \rightarrow \varphi(\mathbf{x})$ then the inner product becomes:

$$
g\left(x_{i}\right)=\operatorname{sign}\left(\sum_{i} \alpha_{i} y^{(i)} \varphi\left(x^{(i)}\right)^{\top} \varphi(x)+b\right)
$$

\square A kernel function is some function that corresponds to a dot product in some transformed feature space:

$$
K\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathbf{j}}\right)=\varphi\left(\mathbf{x}_{\mathbf{i}}\right)^{\top} \varphi\left(\mathbf{x}_{\mathbf{j}}\right)
$$

The "Kernel" trick

The kernel K may be cheaper to compute then the transformation φ
\square Implictly do the transformation
$\phi(x)=\left[\begin{array}{l}x_{1} x_{1} \\ x_{1} x_{2} \\ x_{1} x_{3} \\ x_{2} x_{1} \\ x_{2} x_{2} \\ x_{2} x_{3} \\ x_{3} x_{1} \\ x_{3} x_{2} \\ x_{3} x_{3}\end{array}\right] \quad K(x, z)=\left(\sum_{i=1}^{n} x_{i} z_{i}\right)\left(\sum_{j=1}^{n} x_{i} z_{i}\right)$

Kernels

Why use kernels?
-Make non-separable problem separable.
-Map data into better representational space
Common kernels
-Linear

- Polynomial $K(x, z)=\left(1+x^{\top} z\right)^{d}$

■Radial basis function (infinite dimensional space)

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=e^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 \sigma^{2}}
$$

Summary

Support Vector Machines (SVMs)

\square Choose hyperplane based on support vectors
\square Support vectors are critical points close to the decision boundary
\square Often among the best performing classifiers

