SUPERVISED LEARNING + DECISION TREES

Progress Report

\square We've finished Part I: Problem Solving
\square We've finished Part II: Reasoning with uncertainty!
\square Part III: (Machine) Learning
\square Supervised Learning
\square Unsupervised Learning
\square (Reinforcement Learning)
\square Overlaps quite a bit with Part II

Today

Reading

\square We're skipping to AIMA Chapter 18 !
\square AIMA 18.1-18.4

Goals
\square What is machine learning?
\square What is supervised learning?
\square Decision trees

Machine Learning

The goal of machine learning is to learn from data
\square We might use machine learning to

- learn the probabilities for a Bayesian network
- learn the topology of a Bayesian network

Three types of learning
\square Supervised learning - learning with labels

- Unsupervised learning - learning without labelsReinforcement learning - learning with rewards

Supervised learning terminology

$$
\mathbf{x}_{i} \longrightarrow \quad{ }^{\prime} \longrightarrow y_{i}
$$

Training set

$$
D=\left\{\left(\mathbf{x}_{i}, y_{i}\right) \mid i=1, \ldots, N\right\} \quad \text { where } \quad f\left(\mathbf{x}_{i}\right)=y_{i}
$$

Hypothesis class

$$
h \in \mathcal{H}
$$

Given training set, we want to find the hypothesis in the hypothesis class that "best approximates" f

Supervised learning terminology

Example: Curve fitting

$\square \mathrm{x}$ is the x -coordinate
$\square y$ is the y-coordinate
\square Both hypotheses are consistent
\square Which is better?

Ockham's Razor
(a)
(b)
\square Prefer the simplest consistent hypothesis
Test set

- Evaluate performance of each hypothesis on a new (unseen) set of examples

Supervised Learning terminology

Regression

$\square y$ is a real－valued number
\square e．g．price of a commodity，pollution levels，brain activity
\square Classification
$\square y$ is a discrete（categorical）value
\square e．g．spam or not spam， 5 －star ratings
Structured prediction
$\square y$ is a structured object
\square e．g．given sentence predict parse tree，given words in a sentence predict POS tags

Supervised Learning

Learning with labels
－Spam
\square Digit recognition
\square Rainfall levels in India
－Pollution index
\square Stock returns
－User＇s ratings of movies
－Genre classification
－Sentiment analysis
－Document classification
－Image recognition
\square Part－of－speech
\square Storm trajectories

000000000000000
111111111111111
222222222222220
333333333333333 444444444444444 555555355555555 666666666666666 フフ7アフアフワフワフフフ） 888888888888888 999999949999999

Common Supervised Learning Algorithms

\square Graphical models

- Naïve Bayes classifiers
- Bayesian networks
\square Decision trees
- Random forests (many decision trees)
\square Neural Networks
- Perceptrons
\square Artificial neural networks
- Deep belief nets
\square Max margin classifiers
- Support vector machines
\square Regression analysis
\square Logistic regression
- Linear regression

A procedure for taking a set of labeled examples (i.e. the training set), and constructing a hypothesis h that has the best performance on the training set.

Decision trees

Decision trees

	Day	Outlook	Temp.	Humidity	Wind	PlayTennis	
$\mathrm{x}_{1} \longrightarrow$	D1	Sunny	Hot	High	Weak	No	$\longleftarrow y_{1}$
$\mathrm{x}_{2} \longrightarrow$	D2	Sunny	Hot	High	Strong	No	$\longleftarrow y_{2}$
$\mathrm{x}_{3} \longrightarrow$	D3	Overcast	Hot	High	Weak	Yes	- y_{3}
	D4	Rain	Mild	High	Weak	Yes	
	D5	Rain	Cool	Normal	Weak	Yes	
	D6	Rain	Cool	Normal	Strong	No	
	D7	Overcast	Cool	Normal	Strong	Yes	
	D8	Sunny	Mild	High	Weak	No	
	D9	Sunny	Cool	Normal	Weak	Yes	
	D10	Rain	Mild	Normal	Weak	Yes	
	D11	Sunny	Mild	Normal	Strong	Yes	
	D12	Overcast	Mild	High	Strong	Yes	
	D13	Overcast	Hot	Normal	Weak	Yes	
	D14	Rain	Mild	High	Strong	No	

Decision Trees

Decision trees are best suited to problems where
\square Each attribute is discrete
\square The label y is discrete
\square The hypothesis can be expressed using conjunctions (AND) and disjunctions (OR)

The training data may contain errors
\square The training data may contain missing attribute values

Decision Trees

If the features are continuous, internal nodes may test the value of a feature against a threshold

Learning a Decision Tree

Learning a Decision Tree

function DECISION-TREE-LEARNING (examples, attributes, parents) returns a tree
if examples is empty return MAJORITY_VOTE(parents)
else if all examples have same classification return classification
else if attributes is empty return MAJORITY_VOTE(examples)
else
$\mathrm{A} \longleftarrow$ CHOOSE-BEST-ATTRIBUTE (examples)
tree \longleftarrow a new decision tree with root A
for each value v_{k} of A
$\mathrm{S}_{\mathrm{k}} \quad \longleftarrow$ examples with value v_{k} for attribute A
subtree \longleftarrow DECISION-TREE-LEARNING(S_{k}, attributes-A, examples)
add branch to tree with label $\left(A=v_{k}\right)$ and subtree
return tree

Choosing the best attribute

Splitting on a good attribute

\square After the split, the examples at each branch have the same classification

Splitting on a bad attribute

\square After the split, the examples at each branch have the same proportion of positive and negative examples

We will use entropy and information gain to formalize what we mean by good and bad attributes

Entropy

Entropy measures the uncertainty of a random variable

- How many bits are needed to efficiently encode the possible values (outcomes) of a random variable?Introduced by Shannon in 1948 paper
\square Example: flipping a coin
\square A completely biased coin requires 0 bits of entropy
- A fair coin requires 1 bit of entropy

- How many bits are need to encode the outcome of flipping a fair coin twice?

Entropy and Information Gain

Let A be a random variable with values v_{k}
Each value v_{k} occurs with probability $p\left(v_{k}\right)$
Then the entropy of A is defined as

$$
\begin{aligned}
H(A) & =\sum_{k} p\left(v_{k}\right) \log _{2}\left(\frac{1}{p\left(v_{k}\right)}\right) \\
& =-\sum_{k} p\left(v_{k}\right) \log _{2} p\left(v_{k}\right)
\end{aligned}
$$

(Apply this notion of entropy to choosing the best attribute)

Entropy and Information Gain

Day	Outlook	Temp.	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Decision Trees: additional considerations

\square Overfitting can be caused by many factors
\square Noisy data, irrelevant attributes, spurious correlations, nondeterminism

Can cause additional nodes to be added to the

Decision Trees: additional considerations

Decision Trees: additional considerations

Overfitting\square Can post-process the learned decision tree and prune using significance testing at final nodes
\square Cross-validation using validity set
\square Continuous or integer-valued attributes
\square Use ranges
\square Continuous label y
Combination of splitting and linear regression

