SL: PUTTING IT ALL TOGETHER

Today

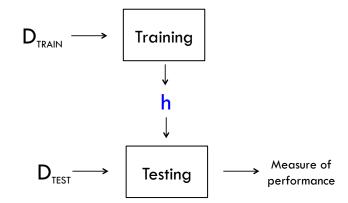
- □ Reading
 - □ AIMA 18.4
- □ Goals
 - □ Step 1: Formulating the problem
 - □ Step 2: Exploring the data
 - □ Step 3: Feature Selection
 - □ Step 4: Training
 - □ Step 5: Testing

The first 4 steps are not necessarily done in a strict linear progression

Recap: Machine Learning

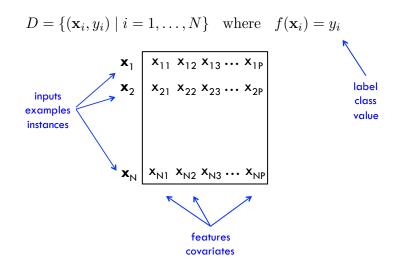
- □ The goal of machine learning is to learn from data
 - We might use machine learning to
 - learn the probabilities for a Bayesian network
 - learn the topology of a Bayesian network
- □ Three types of learning
 - Supervised learning learning with labels
 - Unsupervised learning learning without labels
 - □ Reinforcement learning learning with rewards

Overview



$$D = \{(\mathbf{x}_i, y_i) \mid i = 1, \dots, N\}$$
 where $f(\mathbf{x}_i) = y_i$

Overview



Step 1: Formulate the problem

- □ What quantity are you predicting?
 - Regression
 - Range? Changing over time?
 - Classification
 - Binary classification? Multi-class classification?
 - Singly-labeled? Multi-labeled?
 - For multi-labeled classification tasks, how correlated are the labels?
- □ What data do you have?
 - □ Where to get labeled data? (Amazon mechanical turk)
 - How much labeled data?
 - What is the quality of the labeled data?
 - Are the labels learnable given the data?
 - □ Is the distribution of labels in the data skewed/imbalanced?

Multi-class Classification

- Generalization of binary classification to more than 2 classes
- One-versus-all
 - □ Train C independent binary classifiers: one for each label
 - For classifier c
 - Examples with label c are positive examples
 - All other examples are negative examples
 - At prediction time, choose label whose corresponding
 - classifier has highest "confidence"
- One-versus-one
 - □ Train C(C-1)/2 binary classifiers
 - At prediction time, each classifier votes for a label

NN, NNP, VBZ, DT, RB,...

Multi-class Classification

One-vs-All

x1 c1 x2 c3 x3 c1 x4 c2

x 1 x2 -1 x3 - 1 x4 -1 x2 -1 x3 -1 x4 1

x1 -1 1 х2 x3 -1 x4 -1

original training data

c1 vs. all

x1

x3 - 1 c2 vs. all

c3 vs. all

One-vs-One

x 1 c1 x3 c1 x4 c2 original training

data

x4 -1 c1 vs. c2

1 x 1 x2 -1 x3 1

c1 vs. c3

x2 -1 x4

c2 vs. c3

Multi-label Classification

- Each example can be labeled with multiple labels
 - Don't confuse this with multi-class classification!
 - Common for document classification or object recognition

- One-vs-all
- One classifier for every possible combination of labels
 - Combinatorial explosion
 - Limited training data

Step 2: Exploratory Data Analysis

- □ Look at the data. It's surprising how often we forget to actually do this!
- Exploratory Data Analysis (EDA) is a statistical mindset
 - Box plots, histograms, scatter plots, mean, mode, deviations
 - Can guide the modeling process by
 - give you insight into the data
 - help (in)validate your assumptions
 - detect outliers

Step 3: Feature Selection

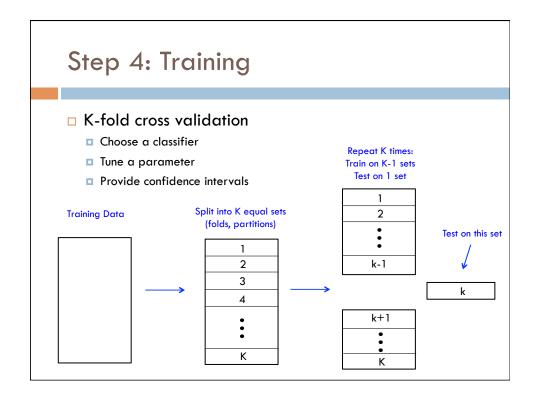
- What features should I use?
 - Dimensionality reduction if exist time/space constraints
 - Reduce noise in the data (irrelevant or redundant features)
- Dimensionality reduction
 - Principal component analysis (PCA)
 - Singular value decomposition (SVD)
 - Canonical correlation analysis (CCA)
- Regularization
 - Use every feature but penalize classifiers that are overly complex

Error(w) =
$$\sum_{i=1}^{N} (y_i - h_w(x_i)) + (\lambda ||w||^2)$$

encourages sparse weight vectors

Step 4: Training

- □ Pick your classifier
 - Decision tree, perceptron, neural network, SVM, linear regression, logistic regression, random forests, ensembles, Gaussian process regression, hidden Markov models, conditional random field, Bayesian networks,...
- □ Your choice is informed by all of the previous steps
 - □ Formulating the problem
 - EDA
- Often there are parameters that must be tuned...



Step 4: Training

```
function CROSS-VALIDATION-WRAPPER(Learner, k, examples) returns a hypothesis
   \begin{center} \textbf{local variables}: errT, an array, indexed by \it size, storing training-set error rates \end{center}
                      err V, an array, indexed by size, storing validation-set error rates
  for size = 1 to \infty do
       errT[size], errV[size] \leftarrow \texttt{CROSS-VALIDATION}(Learner, size, k, examples)
       if errT has converged then do
           best\_size \leftarrow the value of size with minimum errV[size]
           \textbf{return} \ \textit{Learner}(\textit{best\_size}, \textit{examples})
function Cross-Validation(Learner, size, k, examples) returns two values:
           average training set error rate, average validation set error rate
   fold\_errT \leftarrow 0; fold\_errV \leftarrow 0
   for fold = 1 to k do
       training\_set, validation\_set \leftarrow \texttt{PARTITION}(examples, fold, k)
       h \leftarrow \overset{-}{Learner}(size, training\_set)
       fold\_errT \leftarrow fold\_errT + \texttt{ERROR-RATE}(h, training\_set)
       fold\_errV \leftarrow fold\_errV + Error-Rate(h, validation\_set)
   \textbf{return} \ fold\_errT/k, fold\_errV/k
```

Step 5: Testing

- □ We have a final hypothesis
- We now use our hypothesis to predict on new (unseen) examples from the test set.
 - There's no going back and tweaking the classifier based on its test set performance!
- □ Where do these new unseen examples come from?
 - External source
 - Set aside from training data

Binary Classification: Measures of Performance

- □ Let $D_{TEST} = \{ (x_i, y_i) \mid i=1...N \}$ be our test set and $\{ h_i \}$ be the set of predicted values
- □ The contingency table is given by:

	y = 1	y = 0
h = 1	TP	FP
h = 0	FN	TN

- □ TP is the number of true positives
- FP is the number of false positives
- FN is the number of false negatives
- TN is the number of true negatives

Binary Classification: Measures of Performance

$$\label{eq:accuracy} \text{Accuracy} = \frac{TP + TN}{TP + FP + TN + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

Contingency Table

$$F_{1}\text{-score} = 2 \cdot \frac{Prec \cdot Recall}{Prec + Recall}$$

Binary Classification: Measures of Performance

Accuracy =
$$\frac{7+8}{7+8+2+3} = \frac{15}{20} = .75$$

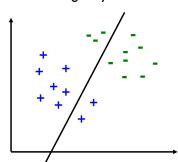
$$Precision = \frac{7}{7+3} = .70$$

$$Recall = \frac{7}{7+2} = .78$$

$$F_{1}$$
-score = $2\left(\frac{.70 \cdot .78}{.70 + .78}\right) = 2\left(\frac{.546}{1.48}\right) = .74$

	y = 1	y = 0
h = 1	7	3
h = 0	2	8

Contingency Table



Multi-class Classification: Measures of performance

- Evaluate each label separately using a "one-vs-all" approach
 - Macro-averaging
 - Compute the measure (precision, recall, F₁) for each class
 - Average across all C classes
 - Gives equal weight to all classes
 - Micro-averaging
 - Pool the TP, FP, FN, TN for all C classes
 - Compute the measure (precision, recall, F1)
 - Weighted towards performance of most likely class

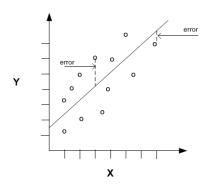
	$y_c = 1$	$y_c = 0$
$h_c = 1$	TP_c	FP _c
$h_c = 0$	FN _c	TN _c

Contingency Table

Regression: Measures of performance

- Mean-squared error
- □ Root mean-squared error
- Mean absolute error
- □ Mean absolute percentage

□ ...



Summary

- Overview
 - Step 1: Formulate the problem
 - □ Step 2: Explore the data
 - □ Step 3: Feature Selection
 - Step 4: Training
 - □ Step 5: Testing
- Lessons
 - □ Choose supervised over unsupervised learning
 - Reproducibility
 - □ Think of how you would justify each decision you made
 - Start simple and iterate