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REINFORCEMENT 
LEARNING 

Today 

¨  Reading 
¤ AIMA 17.1-17.3 (Markov Decision Processes) 
¤ AIMA 21.1-21.3 (Reinforcement Learning) 

¨  Goals 
¤ Markov decision processes 
¤  (Reinforcement Learning) 
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Machine Learning 

¨  Supervised learning: 
¤  Learning with labels 
¤ Decision trees, SVMs, neural networks, perceptrons, linear 

regression, logistic regression, naïve Bayes, etc. 

¨  Unsupervised Learning: 
¤  Learning without labels 
¤  K-means, agglomerative, divisive, model-based clustering 

(i.e. using Expectation Maximization) 

¨  Reinforcement learning: 
¤  Learning with rewards 
¤  Robots, autonomous vehicles 

Reinforcement Learning 
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Reinforcement Learning 

Perform 
actions 

Agent 

Environment 

Get 
rewards 

Learning problem: Given a set of observed (actions, rewards) pairs, 
learn how to act so as to maximize expected rewards  

Learning to walk 
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Markov Decision Processes 

¨  In a deterministic environment, a solution would be [UP, UP, 
RIGHT, RIGHT, RIGHT] 

¨  In our stochastic environment, the probability of reaching goal 
state +1 given this sequence of actions is only 0.33 

186 Chapter 17. Making Complex Decisions
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Figure 17.1 FILES: figures/sequential-decision-world.eps (Tue Nov 3 16:23:43 2009). (a) A
simple 4× 3 environment that presents the agent with a sequential decision problem. (b) Illustration of
the transition model of the environment: the “intended” outcome occurs with probability 0.8, but with
probability 0.2 the agent moves at right angles to the intended direction. A collision with a wall results
in no movement. The two terminal states have reward +1 and –1, respectively, and all other states have
a reward of –0.04.
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Markov Decision Process 

¨  “A sequential decision problem for a fully 
observable, stochastic environment with a 
Markovian transition function and additive rewards 
is called a Markov decision process” 
¤ A set of states s   S 
¤ A set of actions a    A 
¤ A stochastic transition function T(s, a, s’) = p(s’|s, a) 
¤ A reward function R(s)  
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Solution to an MDP 

¨  A policy is a function π: S      A that specifies what 
action the agent should take in any given state. 

¨  Executing a policy can give rise to many action 
sequences! 

 

¨  How can we determine the quality of a policy? 
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Figure 17.2 FILES: figures/sequential-decision-policies.eps (Tue Nov 3 16:23:42 2009). (a) An
optimal policy for the stochastic environment withR(s)= −0.04 in the nonterminal states. (b) Optimal
policies for four different ranges of R(s).

Utility 

¨  Utility is an internal measure of an agent’s success.  
¤ Agent’s own internal performance measure 
¤  Surrogate for success or happiness 

¨  The utility is a function of the rewards: 

X = {x1, x2, . . . , xN

} where x
i

2 [0, 1]M

Z = {z1, z2, . . . , zN} where z
i

2 {1, 2}
✓ = {↵, q1, q2}

z
i

⇠ Discrete(↵, 1� ↵)

x
i

|z
i

⇠ Multivariate Bern(q
zi)

p(x
i

|z
i

= k) =
MY

j=1

qxi
km

· (1� q
km

)(1�xi)

!i

k

= p(z
i

= k|x
i

, ✓t)

/ p(x
i

|qt
k

)p(z
i

= k|↵t)

↵t+1
k

=
1

N

X

i

!i

k

qt+1
km

=

P
i

!i

k

I(x
im

= 1)P
i

!i

k

argmax
✓

Q(✓|✓t)  argmax
✓

log p(X|✓)

U([s0, s1, s2, . . .]) = �0R(s0) + �1R(s1) + �2R(s2) + . . .

=

1X

t=0

�tR(s
t

)

for � 2 [0, 1]

13

a random 
variable 

discount 
factor 



12/10/13	  

6	  

Optimal policy 

¨  The optimal policy π* has the highest expected 
utility 

 
 
¨  The solution to an MDP is some optimal policy π* 

¤ Solution to a deterministic search problem: a sequence 
of actions 

¤ Solution to a non-deterministic sequential decision 
process: a function 
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Gridworld Example 

256 Chapter 21. Reinforcement Learning
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Figure 21.1 FILES: figures/4x3-optimal-policy.eps (Tue Nov 3 16:22:11 2009)
figures/sequential-decision-values.eps (Tue Nov 3 16:23:42 2009). (a) A policy π for the
4× 3 world; this policy happens to be optimal with rewards of R(s)= − 0.04 in the nonterminal
states and no discounting. (b) The utilities of the states in the 4× 3 world, given policy π.

Optimal policy Utilities 
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Markov Decision Processes 
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Figure 17.2 FILES: figures/sequential-decision-policies.eps (Tue Nov 3 16:23:42 2009). (a) An
optimal policy for the stochastic environment withR(s)= −0.04 in the nonterminal states. (b) Optimal
policies for four different ranges of R(s).

Solving MDPs 

¨  Value Iteration Algorithm 
¤  Given an MDP, recursively formulate the utility of starting in a state s  

¤  Suggests an iterative algorithm: 

¤  Once we have U(s) for all states s, we can construct the optimal policy 

652 Chapter 17. Making Complex Decisions

17.2 VALUE ITERATION

In this section, we present an algorithm, called value iteration, for calculating an optimalVALUE ITERATION

policy. The basic idea is to calculate the utility of each state and then use the state utilities to
select an optimal action in each state.

17.2.1 The Bellman equation for utilities

Section 17.1.2 defined the utility of being in a state as the expected sum of discounted rewards
from that point onwards. From this, it follows that there is a direct relationship between the
utility of a state and the utility of its neighbors: the utility of a state is the immediate reward
for that state plus the expected discounted utility of the next state, assuming that the agent
chooses the optimal action. That is, the utility of a state is given by

U(s) = R(s) + γ max
a∈A(s)

∑

s′

P (s
′ | s, a)U(s

′

) . (17.5)

This is called the Bellman equation, after Richard Bellman (1957). The utilities of theBELLMAN EQUATION

states—defined by Equation (17.2) as the expected utility of subsequent state sequences—are
solutions of the set of Bellman equations. In fact, they are the unique solutions, as we show
in Section 17.2.3.

Let us look at one of the Bellman equations for the 4× 3 world. The equation for the
state (1,1) is

U(1, 1) = −0.04 + γ max[ 0.8U(1, 2) + 0.1U(2, 1) + 0.1U(1, 1), (Up)

0.9U(1, 1) + 0.1U(1, 2), (Left)

0.9U(1, 1) + 0.1U(2, 1), (Down)

0.8U(2, 1) + 0.1U(1, 2) + 0.1U(1, 1) ]. (Right)

When we plug in the numbers from Figure 17.3, we find that Up is the best action.

17.2.2 The value iteration algorithm

The Bellman equation is the basis of the value iteration algorithm for solving MDPs. If there
are n possible states, then there are n Bellman equations, one for each state. The n equations
contain n unknowns—the utilities of the states. So we would like to solve these simultaneous
equations to find the utilities. There is one problem: the equations are nonlinear, because the
“max” operator is not a linear operator. Whereas systems of linear equations can be solved
quickly using linear algebra techniques, systems of nonlinear equations are more problematic.
One thing to try is an iterative approach. We start with arbitrary initial values for the utilities,
calculate the right-hand side of the equation, and plug it into the left-hand side—thereby
updating the utility of each state from the utilities of its neighbors. We repeat this until we
reach an equilibrium. Let Ui(s) be the utility value for state s at the ith iteration. The iteration
step, called a Bellman update, looks like this:BELLMAN UPDATE

Ui+1(s) ← R(s) + γ max
a∈A(s)

∑

s′

P (s
′ | s, a)Ui(s

′

) , (17.6)
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Section 17.1. Sequential Decision Problems 651

Remember that π
∗

s is a policy, so it recommends an action for every state; its connection
with s in particular is that it’s an optimal policy when s is the starting state. A remarkable
consequence of using discounted utilities with infinite horizons is that the optimal policy is
independent of the starting state. (Of course, the action sequence won’t be independent;
remember that a policy is a function specifying an action for each state.) This fact seems
intuitively obvious: if policy π

∗

a is optimal starting in a and policy π
∗

b is optimal starting in b,
then, when they reach a third state c, there’s no good reason for them to disagree with each
other, or with π

∗

c , about what to do next.2 So we can simply write π
∗ for an optimal policy.

Given this definition, the true utility of a state is just U
π∗

(s)—that is, the expected
sum of discounted rewards if the agent executes an optimal policy. We write this as U(s),
matching the notation used in Chapter 16 for the utility of an outcome. Notice that U(s) and
R(s) are quite different quantities; R(s) is the “short term” reward for being in s, whereas
U(s) is the “long term” total reward from s onward. Figure 17.3 shows the utilities for the
4× 3 world. Notice that the utilities are higher for states closer to the +1 exit, because fewer
steps are required to reach the exit.
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Figure 17.3 The utilities of the states in the 4× 3 world, calculated with γ =1 and
R(s)= − 0.04 for nonterminal states.

The utility function U(s) allows the agent to select actions by using the principle of
maximum expected utility from Chapter 16—that is, choose the action that maximizes the
expected utility of the subsequent state:

π
∗

(s) = argmax
a∈A(s)

∑

s′

P (s
′ | s, a)U(s

′

) . (17.4)

The next two sections describe algorithms for finding optimal policies.

2 Although this seems obvious, it does not hold for finite-horizon policies or for other ways of combining
rewards over time. The proof follows directly from the uniqueness of the utility function on states, as shown in
Section 17.2.

Bellman Equation 
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Solving MDPs 

¨  Policy Iteration Algorithm 
¤ Policy evaluation: Given πi compute Ui 

¤ Policy improvement: Given Ui compute πi+1 

¤ Repeat 
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Reinforcement Learning 

¨  What happens if we don’t have the whole MDP? 
¤  We know the states and actions 
¤  We don’t know the transition function or reward function 

 
¨  We’re only allowed to sample from the MDP 

¤  Can observe experiences (s, a, r, s’) 
¤  Need to perform actions to generate new experiences 

¨  This is Reinforcement Learning (RL) 
¤  Sometimes called Approximate Dynamic Programming (ADP) 
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Learning Utility Functions 

¨  Passive Reinforcement Learning (fixed policy) 
¤ Direct utility estimation 

¨  Active Reinforcement Learning (unknown policy) 
¤ Q-learning Algorithm 
¤ SARSA 
¤ TD learning 


