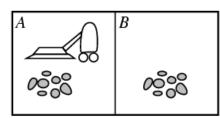
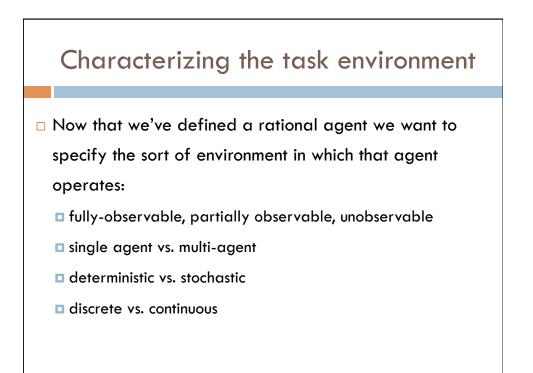
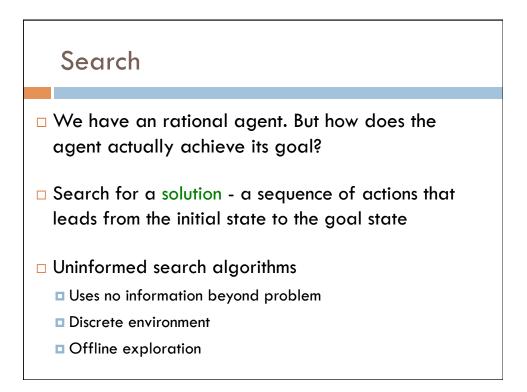


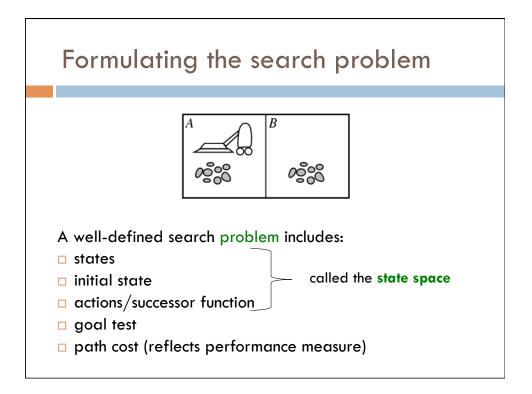
 For each percept sequence, a rational agent chooses an action that maximizes its performance measure given evidence from percept (sequence) and prior knowledge

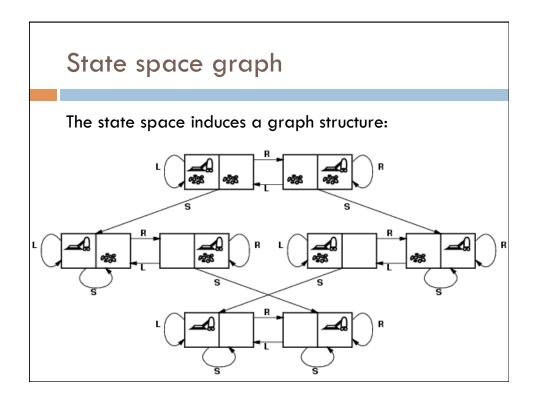


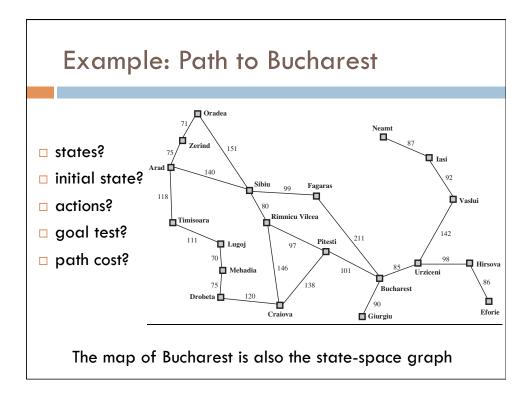


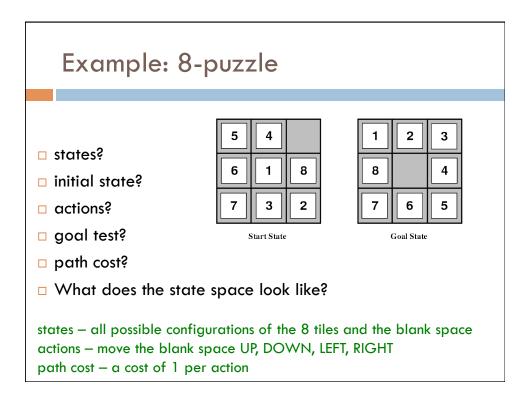
Solving problems by Searching

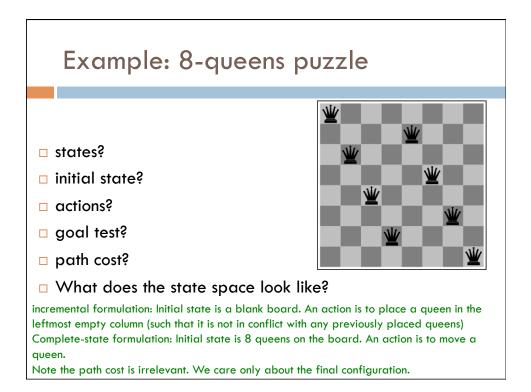


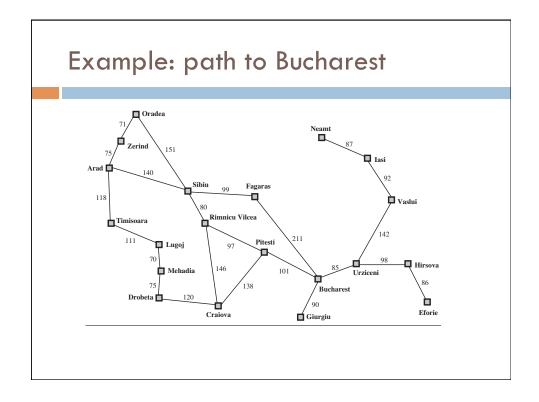


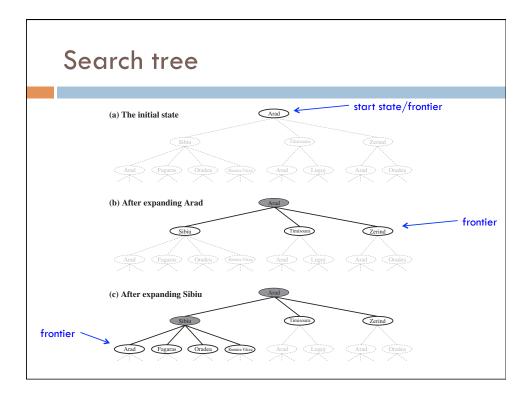


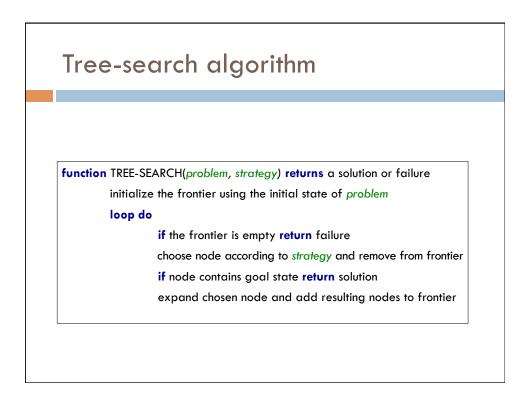


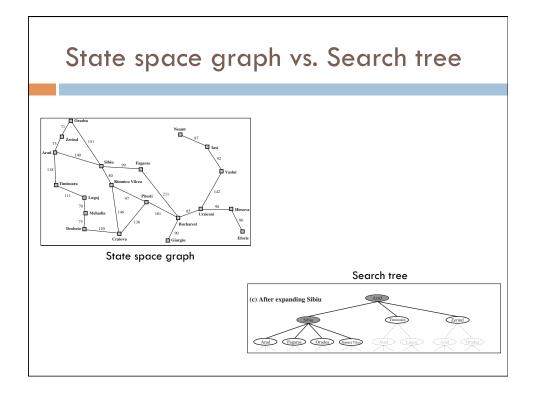


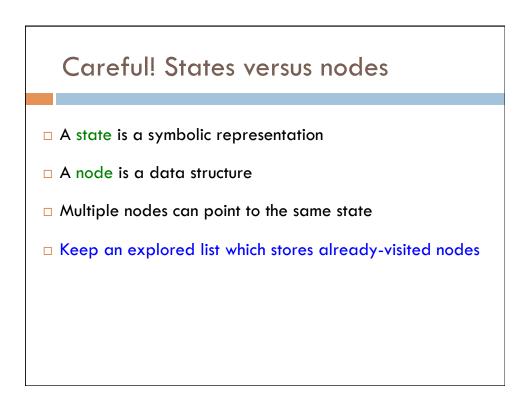


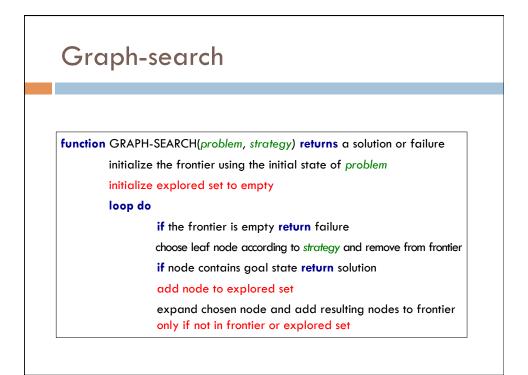


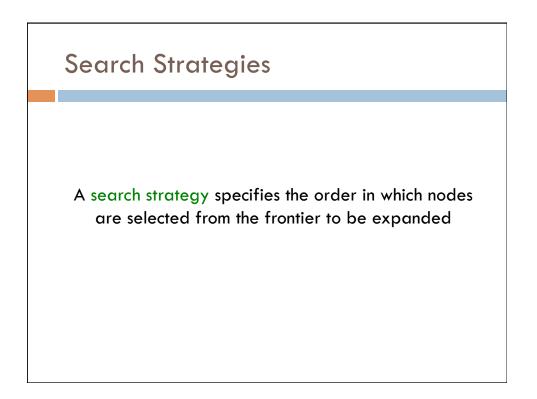


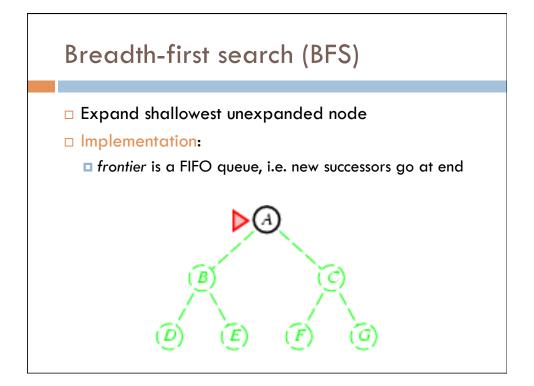


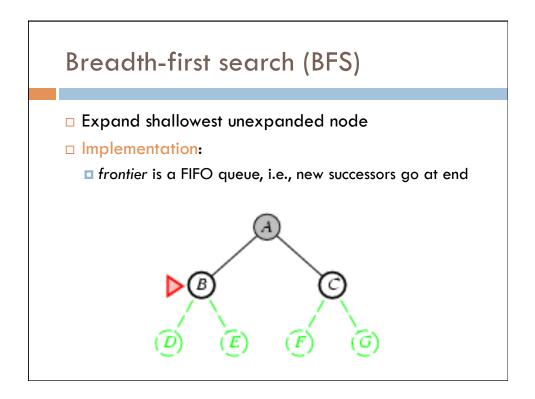


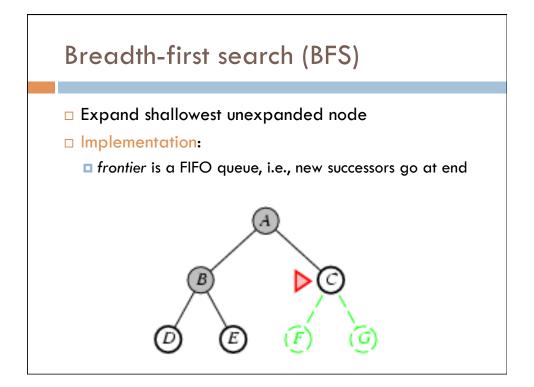


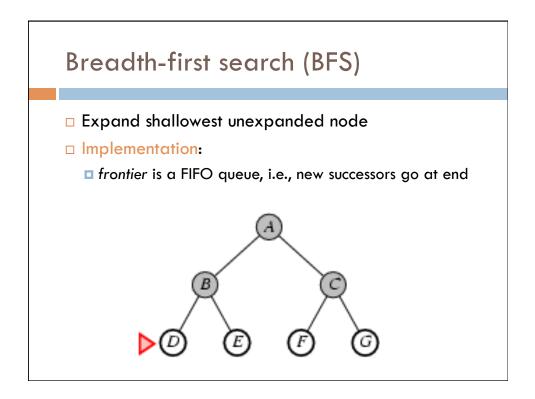




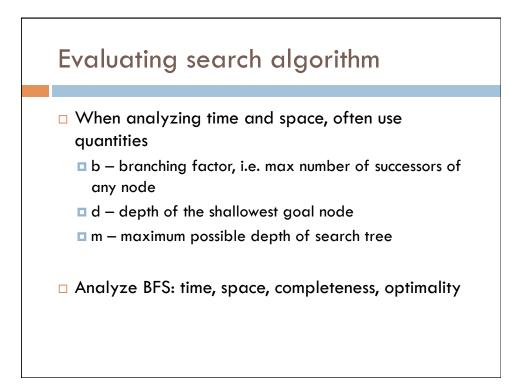








- Time (Big-O)
 - approximately the number of nodes generated (frontier plus explored list)
- Space (Big-O)
 - the max # of nodes stored in memory at any time
- Complete (yes/no)
 - □ If a solution exists, will we find it?
- Optimal (yes/no)
 - If we return a solution, will it be the best/optimal solution, i.e. solution with lowest path cost



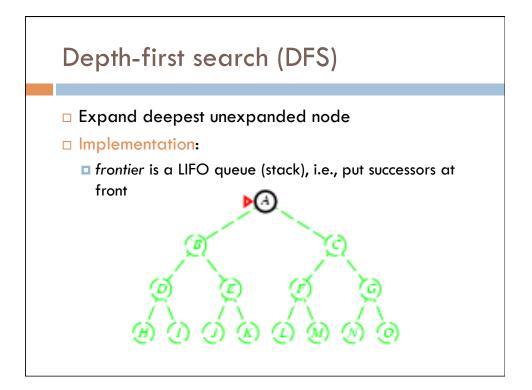
Analyzing BFS

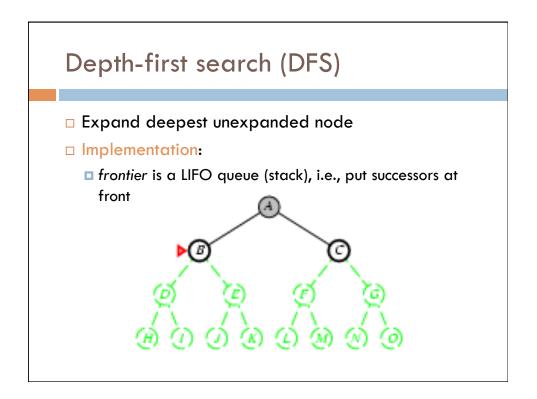
- □ Time: O(b^d)
- □ Space: O(b^d)
- □ Complete = YES if branching factor is finite
- Optimal = YES if path cost is non-decreasing function
 - of depth of the node
- □ (Useful if step costs are constant)

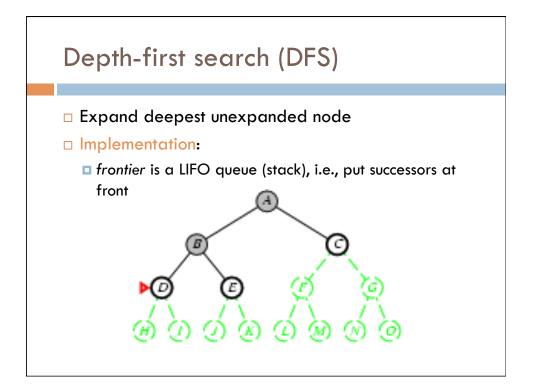
Time and memory requirements for BFS

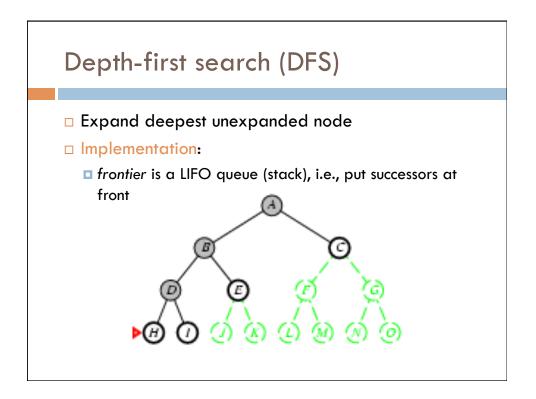
Depth	Nodes	Time	Memory	
2	1100	.11 sec	1 MB	
4	111,100	11 sec	106 MB	
6	10 ⁷	19 min	10 GB	
8	10 ⁹	31 hours	1 terabyte	
10	10 ¹¹	129 days	101 terabytes	
12	10 ¹³	35 years	10 petabytes	
14	10 ¹⁵	3,523 years	1 exabyte	

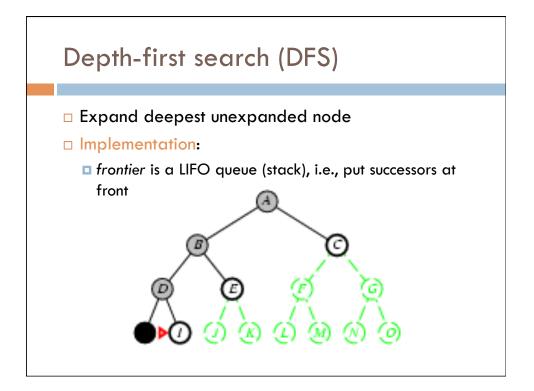
BFS with b=10; 10,000 nodes/sec; 10 bytes/node

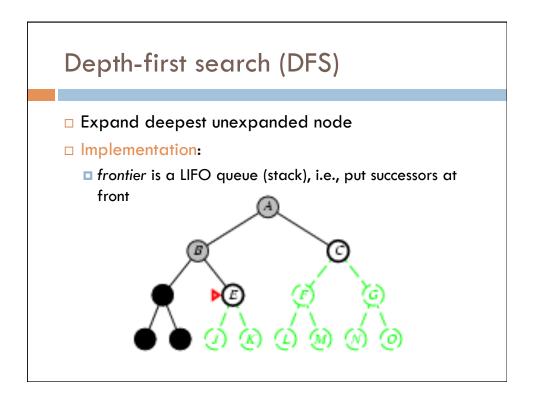


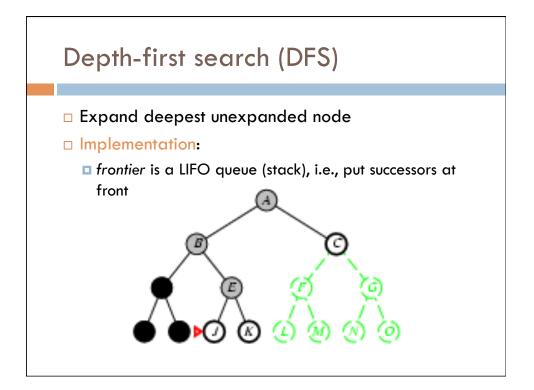


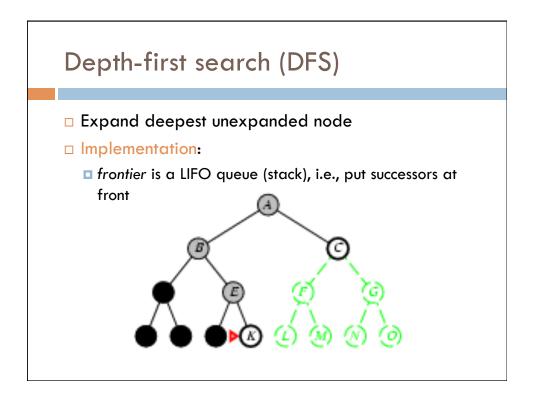


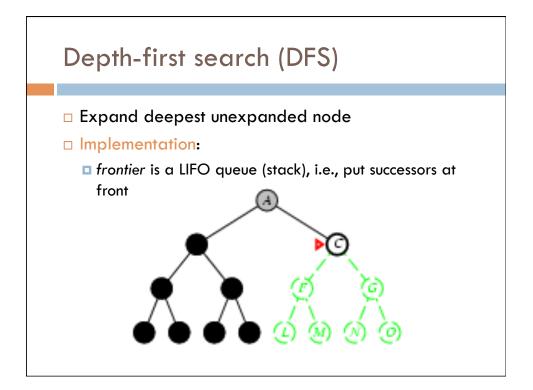


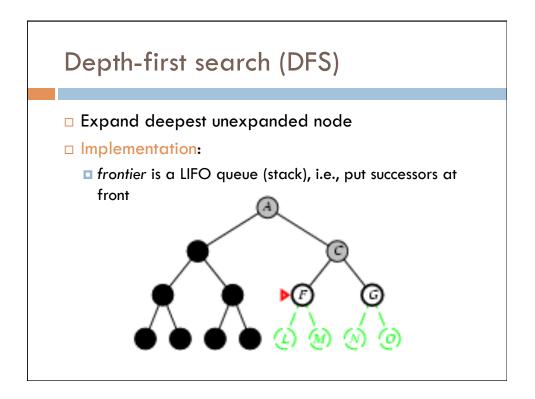


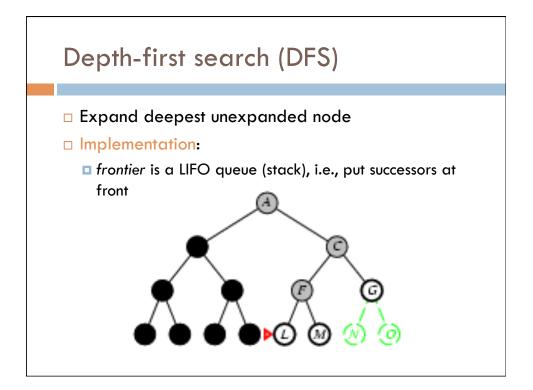


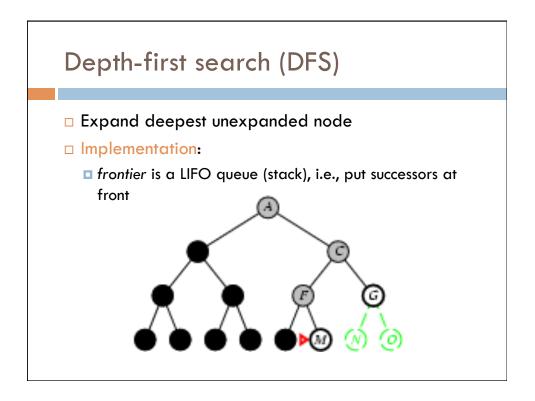


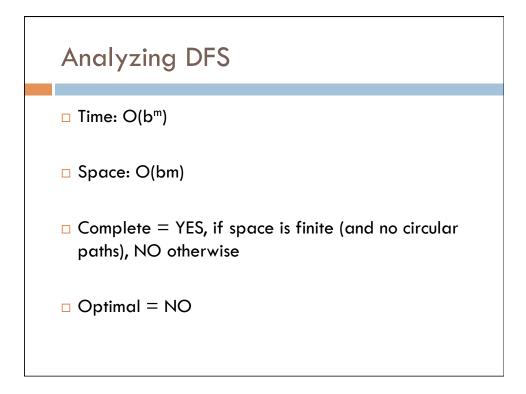


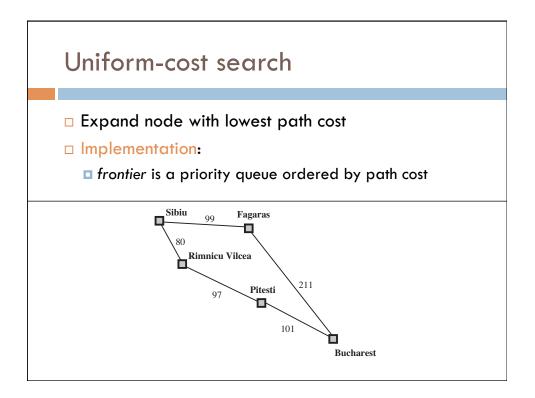






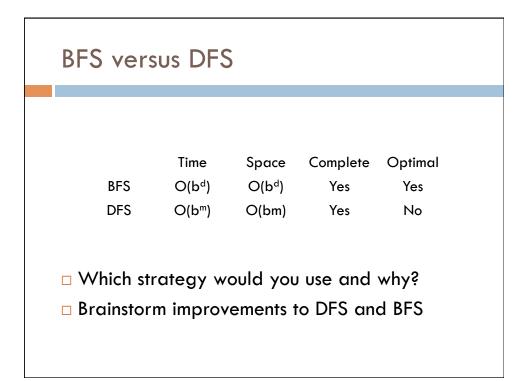


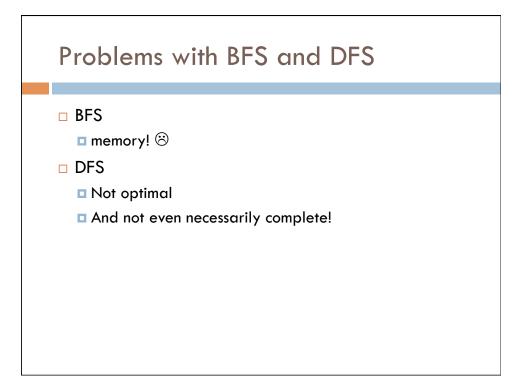


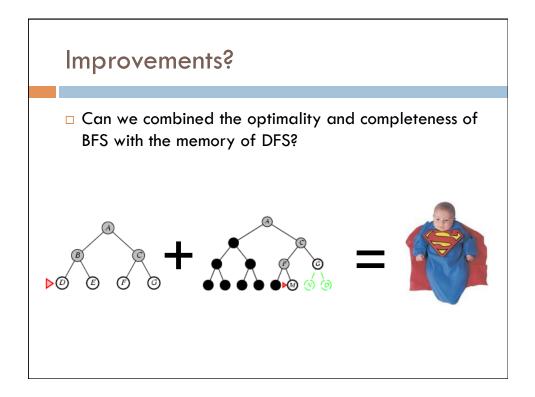


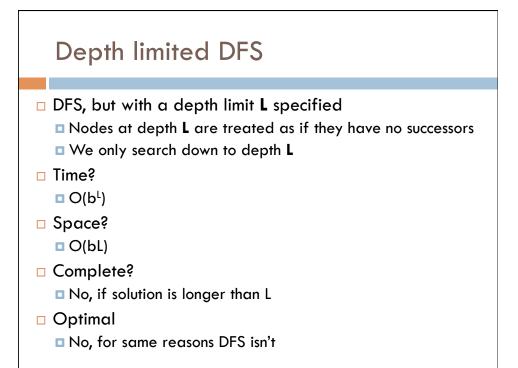

```
□ Time: O(b<sup>C*/\varepsilon</sup>)
```

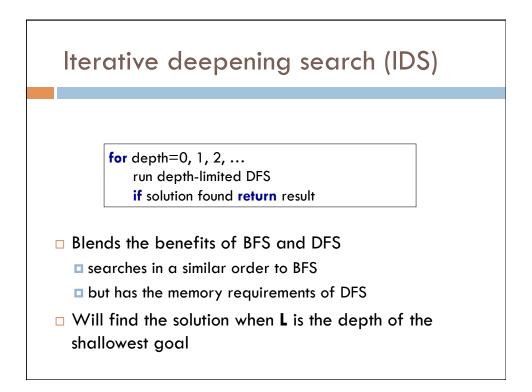
- □ Space: $O(b^{C^*/\varepsilon})$
- □ Complete = YES if step cost exceeds epsilon
- □ Optimal = YES



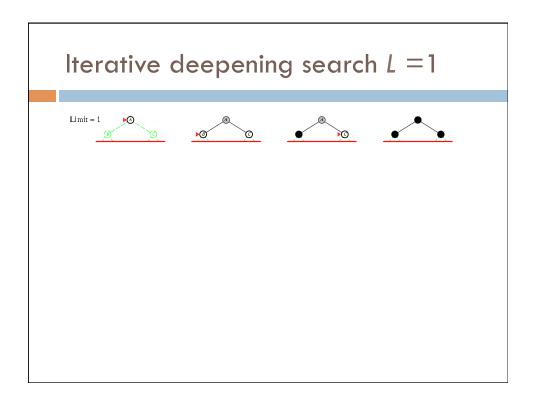


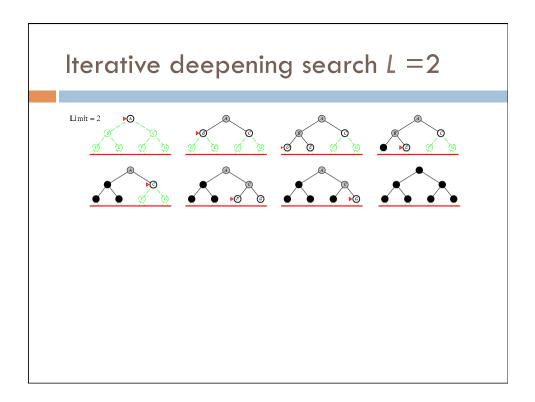


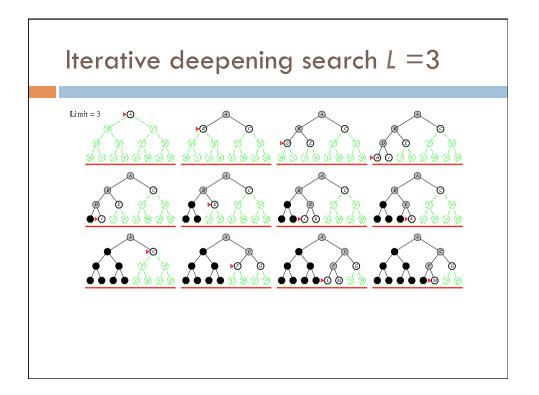




Iterative deepening search $L = 0$							
	Limit = 0	<u>)</u> @					







Time complexity for IDS

```
L = 0: 1
L = 1: 1 + b
L = 2: 1 + b + b<sup>2</sup>
L = 3: 1 + b + b<sup>2</sup> + b<sup>3</sup>
...
L = d: 1 + b + b<sup>2</sup> + b<sup>3</sup> + ... + b<sup>d</sup>
Overall:

d(1) + (d-1)b + (d-2)b<sup>2</sup> + (d-3)b<sup>3</sup> + ... + b<sup>d</sup>
O(b<sup>d</sup>)

Cost of the repeat of the lower levels is subsumed by the cost at the highest level
```

