
9/5/13	

1	

AGENTS AND
ENVIRONMENTS

What is AI in reality?

¨  “AI is our attempt to create a ‘machine’ that thinks
(or acts) humanly (or rationally)”

Think like a human

Cognitive Modeling

Think rationally

Logic-based Systems

Act like a human

Turing Test

Act rationally
Rational Agents

9/5/13	

2	

Today

¨  Reading
¤ Artificial Intelligence: A modern approach (AIMA)

Section 2.1-2.3, 3.1

¨  Goals
¤ Rational agents
¤ Task environment
¤ Uninformed search

How do we create an intelligent vacuum?

Where to
begin?

9/5/13	

3	

Agents

¨  An agent is any thing that perceives the world
through sensors and acts on the world through
actuators.

Agents

¨  percepts - which room, dirt in the room
¨  actions - Left, Right, Suck, Do Nothing

¨  An agent is any thing that perceives the world
through sensors and acts on the world through
actuators.

9/5/13	

4	

Agents

¨  An agent is any thing that perceives the world
through sensors and acts on the world through
actuators.

Agents

¨  An agent is any thing that perceives the world
through sensors and acts on the world through
actuators.

9/5/13	

5	

What is rationality?

Sing a song
Run

Smile
Run and scream

So what makes an agent rational?

Rational agents

¨  For each percept sequence, a rational agent
chooses an action that maximizes its performance
measure given evidence from percept (sequence)
and prior knowledge

Sing a song
Run

Smile
Run and scream

9/5/13	

6	

Rational agents

¨  For each percept sequence, a rational agent
chooses an action that maximizes its performance
measure given evidence from percept (sequence)
and prior knowledge

Characterizing the task environment

¨  Now that we’ve defined a rational agent we want to

specify the sort of environment in which that agent

operates:

¤  fully-observable, partially observable, unobservable

¤  single agent vs. multi-agent

¤ deterministic vs. stochastic

¤ discrete vs. continuous

9/5/13	

7	

Solving problems by Searching

Search

¨  We have an rational agent. But how does the
agent actually achieve its goal?

¨  Search for a solution - a sequence of actions that
leads from the initial state to the goal state

¨  Uninformed search algorithms
¤ Uses no information beyond problem

¤ Discrete environment

¤ Offline exploration

9/5/13	

8	

Formulating the search problem

A well-defined search problem includes:
¨  states
¨  initial state
¨  actions/successor function
¨  goal test
¨  path cost (reflects performance measure)

called the state space

State space graph

The state space induces a graph structure:

9/5/13	

9	

Example: Path to Bucharest

¨  states?
¨  initial state?
¨  actions?
¨  goal test?
¨  path cost?

14 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

The map of Bucharest is also the state-space graph

Example: 8-puzzle

¨  states?
¨  initial state?
¨  actions?
¨  goal test?
¨  path cost?
¨  What does the state space look like?

states – all possible configurations of the 8 tiles and the blank space
actions – move the blank space UP, DOWN, LEFT, RIGHT
path cost – a cost of 1 per action

9/5/13	

10	

Example: 8-queens puzzle

¨  states?
¨  initial state?
¨  actions?
¨  goal test?
¨  path cost?
¨  What does the state space look like?

incremental formulation: Initial state is a blank board. An action is to place a queen in the
leftmost empty column (such that it is not in conflict with any previously placed queens)
Complete-state formulation: Initial state is 8 queens on the board. An action is to move a
queen.
Note the path cost is irrelevant. We care only about the final configuration.

Example: path to Bucharest

14 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

9/5/13	

11	

Search tree

18 Chapter 3. Solving Problems by Searching

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Lugoj AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Arad

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Figure 3.6 FILES: figures/search-map.eps (Tue Nov 3 16:23:38 2009). Partial search trees for
finding a route from Arad to Bucharest. Nodes that have been expanded are shaded; nodes that have
been generated but not yet expanded are outlined in bold; nodes that have not yet been generated are
shown in faint dashed lines.

start state/frontier

frontier

frontier

Tree-search algorithm

function TREE-SEARCH(problem, strategy) returns a solution or failure

 initialize the frontier using the initial state of problem

 loop do

 if the frontier is empty return failure

 choose node according to strategy and remove from frontier

 if node contains goal state return solution

 expand chosen node and add resulting nodes to frontier

9/5/13	

12	

State space graph vs. Search tree
14 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania. State space graph

18 Chapter 3. Solving Problems by Searching

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Lugoj AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Arad

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Figure 3.6 FILES: figures/search-map.eps (Tue Nov 3 16:23:38 2009). Partial search trees for
finding a route from Arad to Bucharest. Nodes that have been expanded are shaded; nodes that have
been generated but not yet expanded are outlined in bold; nodes that have not yet been generated are
shown in faint dashed lines.

Search tree

Careful! States versus nodes

¨  A state is a symbolic representation

¨  A node is a data structure

¨  Multiple nodes can point to the same state

¨  Keep an explored list which stores already-visited nodes

9/5/13	

13	

Graph-search

function GRAPH-SEARCH(problem, strategy) returns a solution or failure

 initialize the frontier using the initial state of problem

 initialize explored set to empty

 loop do

 if the frontier is empty return failure

 choose leaf node according to strategy and remove from frontier

 if node contains goal state return solution

 add node to explored set

 expand chosen node and add resulting nodes to frontier
 only if not in frontier or explored set

Search Strategies

A search strategy specifies the order in which nodes
are selected from the frontier to be expanded

9/5/13	

14	

Breadth-first search (BFS)

¨  Expand shallowest unexpanded node
¨  Implementation:

¤  frontier is a FIFO queue, i.e. new successors go at end

Breadth-first search (BFS)

¨  Expand shallowest unexpanded node
¨  Implementation:

¤  frontier is a FIFO queue, i.e., new successors go at end

9/5/13	

15	

Breadth-first search (BFS)

¨  Expand shallowest unexpanded node
¨  Implementation:

¤  frontier is a FIFO queue, i.e., new successors go at end

Breadth-first search (BFS)

¨  Expand shallowest unexpanded node
¨  Implementation:

¤  frontier is a FIFO queue, i.e., new successors go at end

9/5/13	

16	

Evaluating search algorithm

¨  Time (Big-O)
¤ approximately the number of nodes generated (frontier

plus explored list)
¨  Space (Big-O)

¤  the max # of nodes stored in memory at any time
¨  Complete (yes/no)

¤  If a solution exists, will we find it?
¨  Optimal (yes/no)

¤  If we return a solution, will it be the best/optimal
solution, i.e. solution with lowest path cost

Evaluating search algorithm

¨  When analyzing time and space, often use
quantities
¤ b – branching factor, i.e. max number of successors of

any node
¤ d – depth of the shallowest goal node
¤ m – maximum possible depth of search tree

¨  Analyze BFS: time, space, completeness, optimality

9/5/13	

17	

Analyzing BFS

¨  Time: O(bd)

¨  Space: O(bd)

¨  Complete = YES if branching factor is finite

¨  Optimal = YES if path cost is non-decreasing function

of depth of the node

¨  (Useful if step costs are constant)

Time and memory requirements for BFS

Depth Nodes Time Memory

2 1100 .11 sec 1 MB
4 111,100 11 sec 106 MB
6 107 19 min 10 GB
8 109 31 hours 1 terabyte

10 1011 129 days 101 terabytes
12 1013 35 years 10 petabytes

14 1015 3,523 years 1 exabyte

BFS with b=10; 10,000 nodes/sec; 10 bytes/node

9/5/13	

18	

Depth-first search (DFS)

¨  Expand deepest unexpanded node
¨  Implementation:

¤  frontier is a LIFO queue (stack), i.e., put successors at
front

Depth-first search (DFS)

¨  Expand deepest unexpanded node
¨  Implementation:

¤  frontier is a LIFO queue (stack), i.e., put successors at
front

9/5/13	

19	

Depth-first search (DFS)

¨  Expand deepest unexpanded node
¨  Implementation:

¤  frontier is a LIFO queue (stack), i.e., put successors at
front

Depth-first search (DFS)

¨  Expand deepest unexpanded node
¨  Implementation:

¤  frontier is a LIFO queue (stack), i.e., put successors at
front

9/5/13	

20	

Depth-first search (DFS)

¨  Expand deepest unexpanded node
¨  Implementation:

¤  frontier is a LIFO queue (stack), i.e., put successors at
front

Depth-first search (DFS)

¨  Expand deepest unexpanded node
¨  Implementation:

¤  frontier is a LIFO queue (stack), i.e., put successors at
front

9/5/13	

21	

Depth-first search (DFS)

¨  Expand deepest unexpanded node
¨  Implementation:

¤  frontier is a LIFO queue (stack), i.e., put successors at
front

Depth-first search (DFS)

¨  Expand deepest unexpanded node
¨  Implementation:

¤  frontier is a LIFO queue (stack), i.e., put successors at
front

9/5/13	

22	

Depth-first search (DFS)

¨  Expand deepest unexpanded node
¨  Implementation:

¤  frontier is a LIFO queue (stack), i.e., put successors at
front

Depth-first search (DFS)

¨  Expand deepest unexpanded node
¨  Implementation:

¤  frontier is a LIFO queue (stack), i.e., put successors at
front

9/5/13	

23	

Depth-first search (DFS)

¨  Expand deepest unexpanded node
¨  Implementation:

¤  frontier is a LIFO queue (stack), i.e., put successors at
front

Depth-first search (DFS)

¨  Expand deepest unexpanded node
¨  Implementation:

¤  frontier is a LIFO queue (stack), i.e., put successors at
front

9/5/13	

24	

Analyzing DFS

¨  Time: O(bm)

¨  Space: O(bm)

¨  Complete = YES, if space is finite (and no circular
paths), NO otherwise

¨  Optimal = NO

Uniform-cost search

¨  Expand node with lowest path cost
¨  Implementation:

¤  frontier is a priority queue ordered by path cost

23

Sibiu Fagaras

Pitesti

Rimnicu Vilcea

Bucharest

99

80

97

101

211

Figure 3.15 FILES: figures/romania-subgraph.eps (Tue Nov 3 13:48:07 2009). Part of the Ro-
mania state space, selected to illustrate uniform-cost search.

9/5/13	

25	

Analyzing Uniform-cost search

¨  Time: O(bC*/ε)

¨  Space: O(bC*/ε)

¨  Complete = YES if step cost exceeds epsilon

¨  Optimal = YES

BFS versus DFS

¨  Which strategy would you use and why?
¨  Brainstorm improvements to DFS and BFS

Time Space Complete Optimal

BFS O(bd) O(bd) Yes Yes

DFS O(bm) O(bm) Yes No

9/5/13	

26	

Problems with BFS and DFS

¨  BFS
¤ memory! L

¨  DFS
¤ Not optimal
¤ And not even necessarily complete!

Improvements?

¨  Can we combined the optimality and completeness of
BFS with the memory of DFS?

+ =

9/5/13	

27	

Depth limited DFS

¨  DFS, but with a depth limit L specified
¤ Nodes at depth L are treated as if they have no successors
¤ We only search down to depth L

¨  Time?
¤ O(bL)

¨  Space?
¤ O(bL)

¨  Complete?
¤ No, if solution is longer than L

¨  Optimal
¤ No, for same reasons DFS isn’t

Iterative deepening search (IDS)

for depth=0, 1, 2, …
run depth-limited DFS
if solution found return result

¨  Blends the benefits of BFS and DFS
¤  searches in a similar order to BFS
¤ but has the memory requirements of DFS

¨  Will find the solution when L is the depth of the
shallowest goal

9/5/13	

28	

Iterative deepening search L =0

Iterative deepening search L =1

9/5/13	

29	

Iterative deepening search L =2

Iterative deepening search L =3

9/5/13	

30	

Time complexity for IDS

¨  L = 0: 1
¨  L = 1: 1 + b
¨  L = 2: 1 + b + b2
¨  L = 3: 1 + b + b2 + b3
¨  …
¨  L = d: 1 + b + b2 + b3 + … + bd
¨  Overall:

¤  d(1) + (d-1)b + (d-2)b2 + (d-3)b3 + … + bd

¤ O(bd)

¤ Cost of the repeat of the lower levels is subsumed by the
cost at the highest level

Analysis of IDS

¨  Space
¤ O(bd)

¨  Complete?
¤ Yes

¨  Optimal?
¤ Yes

