

e Slody: Edieni Dirichlei Anocan			
"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

Modeling uncertainty over time

- Tracy got a new job working at the Coop. She works the late shift and doesn't get off until 2am. When she works the late shift, I often observe her eyes are red the next day. But sometimes she stays up late doing homework, and her eyes are red anyways.
- □ What are questions we might be interested in asking?
- □ How can we model this domain as a Bayesian network?

States and Evidence

- □ Model a dynamic process as a series of time slices
- □ Each time slice contains a set of random variables
 - We observe the value of some random variables called the evidence. Often denoted as E_t
 - We don't observe the value of some random variables called the state. Often denoted as X_t

10

Smoothing: $p(X_k | e_{1:t})$ for $1 \le k \le t$

$$p(X_k|e_{1:t}) = p(X_k|e_{1:k}, e_{k+1:t})$$

$$\propto p(X_k, e_{k+1:t}|e_{1:k})$$

$$= p(e_{k+1:t}|X_k, e_{1:k}) p(X_k|e_{1:k})$$

$$= p(e_{k+1:t}|X_k) p(X_k|e_{1:k})$$
Forward Algorithm

Particle Filtering

Likelihood weighting fixes the evidence variables and samples only the non-evidence variables

Introduces a weight to correct for the fact that we're sampling from the prior distribution instead of the posterior distribution

weight = $p(e_1 | Parents(e_1)) * p(e_2 | Parents(e_2)) \dots$

Particle Filtering

Initialize

Draw N particles (i.e. samples) for X₀ from the prior distribution p(X₀)

□ Propagate

D Propagate each particle forward by sampling $X_{t+1} \mid X_t$

Weight

- **•** Weight each particle by $p(e_{t+1} | X_{t+1})$
- Resample
 - Generate N new particles by sampling proportional to the weights. The new particles are unweighted

