PROBABILISTIC REASONING OVER TIME

Today

\square Reading

- AIMA Chapter 15.1-15.2, 15.5
\square Goals
\square Case study: Latent Dirichlet allocation
\square Reasoning with uncertainty over time
\square Types of inference
■ Filtering, prediction, smoothing, most likely explanation

Case Study: Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a Bayesian network that describes a hypothetical process of generating a document

Case Study: LDA

Latent Dirichlet Allocation is a Bayesian network that describes a hypothetical process of generating a document
\square Similarities/differences to past examples?

What are the independencies encoded in the Bayesian Network?

Case Study: Inference in LDA

Marginalize out θ and ϕ

Use Gibbs sampling to draw samples from the posterior distribution:

$$
p(z \mid w) \propto p(z, w)
$$

Each sample is an assignment of words to topics
We want the most likely assignment, i.e. the assignment of words to topics that has the highest probability

Case Study: Latent Dirichlet Allocation

Topic 247

word	prob.
DRUGS	.069
DRUG	.060
MEDICINE	.027
EFFECTS	.026
BODY	.023
MEDICINES	.019
PAIN	.016
PERSON	.016
MARIJUANA	.014
LABEL	.012
ALCOHOL	.012
DANGEROUS	.011
ABUSE	.009
EFFECT	.009
KNOWN	.008
PILLS	.008

Topic 5

word	prob.
RED	.202
BLUE	.099
GREEN	.096
YELLOW	.073
WHITE	.048
COLOR	.048
BRIGHT	.030
COLORS	.029
ORANGE	.027
BROWN	.027
PINK	.017
LOOK	.017
BLACK	.016
PURPLE	.015
CROSS	.011
COLORED	.009

Topic 43

word	prob.
MIND	.081
THOUGHT	.066
REMEMBER	.064
MEMORY	.037
THINKING	.030
PROFESSOR	.028
FELT	.025
REMEMBERED	.022
THOUGHTS	.020
FORGOTTEN	.020
MOMENT	.020
THINK	.019
THING	.016
WONDER	.014
FORGET	.012
RECALL	.012

Topic 56

word	prob.
DOCTOR	.074
DR.	.063
PATIENT	.061
HOSPITAL	.049
CARE	.046
MEDICAL	.042
NURSE	.031
PATIENTS	.029
DOCTORS	.028
HEALTH	.025
MEDICINE	.017
NURSING	.017
DENTAL	.015
NURSES	.013
PHYSICIAN	.012
HOSPITALS	.011

Figure 1. An illustration of four (out of 300) topics extracted from the TASA corpus.

Case Study: Latent Dirichlet Allocation

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

Modeling uncertainty over time

Sometimes, we want to model a dynamic process:
the value of the random variables change over time
\square Price of a stock
\square Patient stats, e.g. blood pressure, heart rate, blood sugar levels
\square Traffic on California highways
\square Pollution, humidity, temperature, rain fall, storms
\square Sensor tracking and detection

Modeling uncertainty over time

Tracy got a new job working at the Coop. She works the late shift and doesn't get off until 2am. When she works the late shift, I often observe her eyes are red the next day. But sometimes she stays up late doing homework, and her eyes are red anyways.

What are questions we might be interested in asking?
\square How can we model this domain as a Bayesian network?

Modeling uncertainty over time

Suppose we also know that if Tracy works the late shift one night she is less likely to work the late shift the next night.

How does this change the model?

States and Evidence

Model a dynamic process as a series of time slices
Each time slice contains a set of random variables
\square We observe the value of some random variables called the evidence. Often denoted as E_{t}
\square We don't observe the value of some random variables called the state. Often denoted as X_{t}

Transition Model

\square We're often interested in reasoning about the state variables
X_{t} given the history $X_{0: t-1}$
\square Markov Assumption: the state variable X_{t} depends on a bounded subset of $X_{0: t-1}$
\square First order Markov Process: $P\left(X_{t} \mid X_{0: t-1}\right)=P\left(X_{t} \mid X_{t-1}\right)$
\square Second order Markov Process: $P\left(X_{t} \mid X_{0: t-1}\right)=P\left(X_{t} \mid X_{t-1}, X_{t-2}\right)$
(a)

(b)

Transition Model

\square We're often interested in reasoning about the state variables X_{t} given the history $X_{0: t-1}$
\square Stationarity Assumption: the conditional distribution $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right)$ is the same for all t
\square Need to specify only one conditional distribution

Sensor (emission) model

The state variables are responsible for generating (emitting) the evidence variables

- Sensor Markov Assumption: the evidence at time t is independent of every other random variable given the state at time t
- As a result, your state should encompass all relevant information for specifying the evidence

Hidden Markov Model

\square Hidden Markov Models involve three things:
\square Transition model: $P\left(X_{t} \mid X_{t-1}\right)$
\square Emission (evidence) model: $P\left(E_{t} \mid X_{t}\right)$

- Prior probability: $P\left(X_{0}\right)$

Inference Tasks

\square Filtering: $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{e}_{1: t}\right)$
\square Decision making in the here and now
Prediction: $P\left(X_{t+k} \mid e_{1: t}\right)$
\square Trying to plan the future
Smoothing: $P\left(X_{k} \mid e_{1: t}\right)$ for $0 \leq k<t$
\square Gives a better (smoother) estimate than filtering by taking into account future evidence
\square Most Likely Explanation (MLE): $\underset{\mathbf{x}_{1: t}}{\operatorname{argmax}} P\left(x_{1: t} \mid e_{1: t}\right)$
\square e.g., speech recognition, sketch recognition

Filtering: $P\left(X_{t} \mid e_{1: t}\right)$
\square A recursive state estimation algorithm

Filtering: $P\left(X_{t} \mid e_{1: t}\right)$

\square Assume we already have $p\left(X_{t-1} \mid e_{1: t-1}\right)$

Filtering: $P\left(X_{t} \mid e_{1: t}\right)$

\square Update from state X_{t-1} to X_{t}

Filtering: $P\left(X_{t} \mid e_{1: t}\right)$

Then incorporate the new evidence E_{t}

The Forward Algorithm

$$
\begin{aligned}
& p\left(X_{t} \mid e_{1: t}\right)=p\left(X_{t} \mid e_{1: t-1}, e_{t}\right) \\
& \propto p\left(e_{t} \mid X_{t}, e_{1: t-1}\right) p\left(X_{t} \mid e_{1: t-1}\right) \\
&=p\left(e_{t} \mid X_{t}\right) \\
& \underbrace{p\left(X_{t} \mid e_{1: t-1}\right)}_{\begin{array}{c}
\text { Incorporate } \\
\text { evidence }
\end{array}} \\
& \underbrace{}_{\text {Update state }}
\end{aligned}
$$

The Forward Algorithm

$$
\begin{aligned}
p\left(X_{t} \mid e_{1: t}\right) & =p\left(X_{t} \mid e_{1: t-1}, e_{t}\right) \\
& \propto p\left(e_{t} \mid X_{t}, e_{1: t-1}\right) p\left(X_{t} \mid e_{1: t-1}\right) \\
& =p\left(e_{t} \mid X_{t}\right) p\left(X_{t} \mid e_{1: t-1}\right) \\
& =p\left(e_{t} \mid X_{t}\right) \sum_{X_{t-1}} p\left(X_{t}, X_{t-1} \mid e_{1: t-1}\right) \\
& =p\left(e_{t} \mid X_{t}\right) \sum_{X_{t-1}} p\left(X_{t} \mid X_{t-1}, e_{1: t-1}\right) p\left(X_{t-1} \mid e_{1: t-1}\right) \\
& =p(\underbrace{p\left(e_{t} \mid X_{t}\right)} \sum_{X_{t-1}} p(\underbrace{\left(X_{t} \mid X_{t-1}\right) p\left(X_{t-1} \mid e_{1: t-1}\right.})
\end{aligned}
$$

$$
\text { Emission } \quad \text { Transmission }+ \text { recursion }
$$

Filtering Example

$$
\left.p\left(R_{0}\right)=<0.5,0.5\right\rangle
$$

R_{t-1}	$p\left(R_{t} \mid R_{t-1}\right)$
T	0.7
F	0.3

R_{t}	$p\left(U_{t} \mid R_{t}\right)$
T	0.9
F	0.2

$$
p\left(X_{t} \mid e_{1: t}\right) \propto p\left(e_{t} \mid X_{t}\right) \sum_{X_{t-1}} p\left(X_{t} \mid X_{t-1}\right) p\left(X_{t-1} \mid e_{1: t-1}\right)
$$

Prediction

\square Compute $\mathrm{p}\left(\mathrm{X}_{\mathrm{t}+\mathrm{k}} \mid \mathrm{e}_{1: \mathrm{t}}\right)$ for $\mathrm{k}>0$
\square Given the equations for filtering, can you figure out how to do prediction?

Smoothing: $p\left(X_{k} \mid e_{1: t}\right)$ for $1 \leq k<t$

$$
\begin{aligned}
p\left(X_{k} \mid e_{1: t}\right) & =p\left(X_{k} \mid e_{1: k}, e_{k+1: t}\right) \\
& \propto p\left(X_{k}, e_{k+1: t} \mid e_{1: k}\right) \\
& =p\left(e_{k+1: t} \mid X_{k}, e_{1: k}\right) p\left(X_{k} \mid e_{1: k}\right) \\
& =p\left(e_{k+1: t} \mid X_{k}\right) \underbrace{p\left(X_{k} \mid e_{1: k}\right)}_{\text {Forward Algorithm }}
\end{aligned}
$$

The Backward Algorithm

...

\square A recursive state estimation algorithm

The Backward Algorithm

\square Assume we have $\mathrm{p}\left(\mathrm{X}_{\mathrm{k}+1} \mid \mathrm{e}_{\mathrm{k}+2: \mathrm{t}}\right)$

The Backward Algorithm

Incorporate evidence via $\mathrm{p}\left(\mathrm{e}_{\mathrm{k}+1} \mid \mathrm{X}_{\mathrm{k}+1}\right)$

The Backward Algorithm

\square Update the state via $p\left(X_{k+1} \mid X_{k}\right)$

Smoothing: $p\left(X_{k} \mid e_{1: t}\right)$ for $1 \leq k<t$

$$
\begin{aligned}
p\left(X_{k} \mid e_{1: t}\right) & =p\left(X_{k} \mid e_{1: k}, e_{k+1: t}\right) \\
& \propto p\left(X_{k}, e_{k+1: t} \mid e_{1: k}\right) \\
& =p\left(e_{k+1: t} \mid X_{k}, e_{1: k}\right) p\left(X_{k} \mid e_{1: k}\right) \\
& =p\left(e_{k+1: t} \mid X_{k}\right) \underbrace{p\left(X_{k} \mid e_{1: k}\right)}_{\text {Forward Algorithm }}
\end{aligned}
$$

$$
\begin{aligned}
p\left(e_{k+1: t} \mid X_{k}\right) & =\sum_{X_{k}+1} p\left(e_{k+1: t}, X_{k+1} \mid X_{k}\right) \\
& =\sum_{X_{k}+1} p\left(e_{k+1: t} \mid X_{k+1}\right) p\left(X_{k+1} \mid X_{k}\right) \\
& =\sum_{X_{k}+1} p(\underbrace{e_{k+1} \mid X_{k+1}}_{\text {Emission }}) p(\underbrace{e_{k+2: t} \mid X_{k+1}}_{\text {Recursion }}) p(\underbrace{\left(X_{k+1} \mid X_{k}\right)}_{\text {Transmission }}
\end{aligned}
$$

Smoothing Example

$$
\left.p\left(R_{0}\right)=<0.5,0.5\right\rangle
$$

R_{t-1}	$p\left(R_{t} \mid R_{t-1}\right)$
T	0.7
F	0.3

R_{t}	$p\left(U_{t} \mid R_{t}\right)$
T	0.9
F	0.2

$P\left(r_{1} \mid v_{1}\right)$	$P\left(r_{2} \mid v_{1}, v_{2}\right)$	$P\left(r_{1} \mid v_{1}, v_{2}\right)$
0.818	0.883	$?$

Most Likely Explanation

Find the state sequence that makes the observed evidence sequence most likely

$$
\underset{X_{1: t}}{\operatorname{argmax}} P\left(X_{1: t} \mid e_{1: t}\right)
$$

Recursive formulation:
\square The most likely state sequence for $X_{1: t}$ is the most likely state sequence for $X_{1: t-1}$ followed by the transition to X_{t} Equivalent to Filtering algorithm except summation replaced with max

- Called the Viterbi Algorithm

Dynamic Bayesian Networks

Any BN that represents a temporal probability distribution using state variables and evidence variables is called a Dynamic Bayesian Network
\square A Hidden Markov Model is the simplest type of DBN
\square State is represented by a single variable
\square Evidence is represented by a single variable
\square Applications

- speech recognition
- handwriting recognition
- gesture recognition

Approximate Inference in Dynamic BN

Recall approximate inference algorithms from previous lecture
\square Direct sampling, rejection sampling, likelihood weighting
\square Gibbs sampling

Likelihood weighting applied to DBN (with some modifications) is known as a Particle filter

Particle Filtering

Likelihood weighting fixes the evidence variables and samples only the non-evidence variables Introduces a weight to correct for the fact that we're sampling from the prior distribution instead of the posterior distribution

```
weight = p(e ( | Parents(e, ))*p(e}\mp@subsup{e}{2}{}|\operatorname{Parents(e}\mp@subsup{e}{2}{\prime}) ...
```


Particle Filtering

Initialize

\square Draw N particles (i.e. samples) for X_{0} from the prior distribution $p\left(X_{0}\right)$Propagate
\square Propagate each particle forward by sampling $X_{t+1} \mid X_{t}$

Weight

\square Weight each particle by $p\left(e_{t+1} \mid X_{t+1}\right)$

Resample

\square Generate N new particles by sampling proportional to the weights. The new particles are unweighted

Particle Filtering

- Particles: track samples of states rather than an explicit distribution

