PROBABILISTIC
REASONING OVER TIME

Today

0 Reading
o AIMA Chapter 15.1-15.2,15.5

o Goals
o Case study: Latent Dirichlet allocation
1 Reasoning with uncertainty over time

o Types of inference

m Filtering, prediction, smoothing, most likely explanation

11/20/13


America Chambers


11/20/13

Case Study: Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a Bayesian network
that describes a hypothetical process of generating a
document

boxes (i.e. plates) are analogous

o
Plate notation is a compact @
representation of a BN where
to for-loops @

D
Case Study: LDA
Latent Dirichlet Allocation is a Bayesian network that
describes a hypothetical process of generating a
document T
Similarities/differences to past @
examples?
What are the independencies
encoded in the Bayesian n @
Network?2 |
T Ny
D




Case Study: Inference in LDA

Marginalize out 8 and @

Use Gibbs sampling to draw samples from the

posterior distribution:

We want the most likely assignment, i.e. the

p(zlw) o p(z,w)

Each sample is an assignment of words to topics

assignment of words to topics that has the highest

probability

Case Study: Latent Dirichlet Allocation

Topic 247 Topic 5 Topic 43 Topic 56
word _ prob. word _ prob. word _ prob. word prob.
DRUGS .069 RED .202 MIND  .081 DOCTOR .074
DRUG .060 BLUE .099 THOUGHT .066 DR. .063
MEDICINE  .027 GREEN  .096 REMEMBER .064 PATIENT .061
EFFECTS .026 YELLOW .073 MEMORY  .037 HOSPITAL  .049
BODY .023 WHITE .048 THINKING .030 CARE .046
MEDICINES  .019 COLOR  .048 PROFESSOR  .028 MEDICAL .042
PAIN .016 BRIGHT .030 FELT .025 NURSE .031
PERSON .016 COLORS  .029 REMEMBERED .022 PATIENTS .029
MARIJUANA 014 ORANGE .027 THOUGHTS .020 DOCTORS .028
LABEL .012 BROWN  .027 FORGOTTEN  .020 HEALTH .025
ALCOHOL .012 PINK .017 MOMENT  .020 MEDICINE .017
DANGEROUS  .011 LOOK .017 THINK .019 NURSING .017
ABUSE .009 BLACK .016 THING .016 DENTAL .015
EFFECT .009 PURPLE .015 WONDER .014 NURSES .013
KNOWN .008 CROSS .011 FORGET .012 PHYSICIAN .012
PILLS _.008 COLORED __.009 RECALL _.012 HOSPITALS .011

Figure 1. An illustration of four (out of 300) topics extracted from the TASA corpus.
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Case Study: Latent Dirichlet Allocation

“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

Modeling uncertainty over time

-1 Sometimes, we want to model a dynamic process:
the value of the random variables change over time

Price of a stock

Patient stats, e.g. blood pressure, heart rate, blood
sugar levels

Traffic on California highways

Pollution, humidity, temperature, rain fall, storms

Sensor tracking and detection
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Modeling uncertainty over time

Tracy got a new job working at the Coop. She works
the late shift and doesn’t get off until 2am. When she
works the late shift, | often observe her eyes are red
the next day. But sometimes she stays up late doing
homework, and her eyes are red anyways.

What are questions we might be interested in asking?

How can we model this domain as a Bayesian network?

Modeling uncertainty over time

Suppose we also know that if Tracy works the late
shift one night she is less likely to work the late shift
the next night.

How does this change the model?
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States and Evidence

Model a dynamic process as a series of time slices

Each time slice contains a set of random variables

We observe the value of some random variables called
the evidence. Often denoted as E,

We don't observe the value of some random variables
called the state. Often denoted as X,

Transition Model

We're often interested in reasoning about the state variables

X, given the history X, ;

Markov Assumption: the state variable X, depends on a
bounded subset of X, ,

First order Markov Process: P(X| Xo,.1) = P(X;[X.;)

Second order Markov Process: P(X, | Xy, 1) = P(X,| X1, X.2)

@ —XD)—~E D)X D)—~X )X
R o S S 7y W 9y WG o
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Transition Model

0 We're often interested in reasoning about the state variables

X, given the history X,

o Stationarity Assumption: the conditional distribution P(X,| X, ;) is
the same for all t

Need to specify only one conditional distribution

Sensor (emission) model

01 The state variables are responsible for generating (emitting)
the evidence variables

0 Sensor Markov Assumption: the evidence at time t is
independent of every other random variable given the state at

time t

As a result, your state should encompass all relevant information for

specifying the evidence
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Hidden Markov Model

Hidden Markov Models involve three things:
Transition model: P(X,| X, ;)
Emission (evidence) model: P(E,| X))
Prior probability: P(X)

° ° e h 0 G

Inference Tasks

Filtering: P(X,| e;,)

Decision making in the here and now
Prediction: P(X,,, | e;,)

Trying to plan the future
Smoothing: P(X, | e, ) for 0 < k <t

Gives a better (smoother) estimate than filtering by
taking into account future evidence

Most Likely Explanation (MLE): argmax P(x, | e, )

Xyt

e.d., speech recognition, sketch recognition
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Filtering: P(X,| e, )

A recursive state estimation algorithm

Filtering: P(X,| e )

Assume we already have p(X, ;|e;. ;)




Filtering: P(X,| e )

Update from state X, ; to X,

Filtering: P(X,| e )

Then incorporate the new evidence E,
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The Forward Algorithm

P(Xt|61:t) = p(Xt|€1:t—1, €t)
p(et\Xt, el:t—l) p(Xt|€1:t—1)
= p(€t|Xt) p(Xt‘elzt—l)

L J \ J
Y Y

®

Incorporate Update state
evidence

The Forward Algorithm

P(Xt|61:t) = p(Xt|€1:t—1, €t)
p(et\Xt, el:t—l) p(Xt|€1:t—1)
= p(€t|Xt) p(Xt‘elzt—l)

®

= pled] Xi) Z (X, Xi—1ler:i—1)

X1

= plet] Xt) Z p(Xe|Xi—1,e10-1) P(Xi-1]er:i—1)
X1

= pled| Xe) Z (X Xi—1) p(Xi—1ler:e—1)
Xia ‘ J

Emission Transmission + recursion
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Filtering Example

p(Ry) = <0.5, 0.5>

(Rain)-

Rain, in, Raing

Reti | P(R | Ry)

T 0.7

()

R. | p(UdR)

T 0.9

F 0.2 p(Xeler) < pled]| Xy) Z P(X| Xi—1) p(Xi—1ler:i—1)

Xi—1
Prediction

o Compute p(X,, | e, fork>0

o1 Given the equations for filtering, can you figure out

how to do prediction?
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Smoothing: p(X, e ) for 1 <k <t

p(Xkleit) = p(Xkleik, eryi:t)
(X €k+1: t|€1 k)
(
(

%

ek+1:t| Xk, e1:) P(Xk|e1:x)

ert+1:¢| Xx) p(Xkle1.k)
\—Y—/

Forward Algorithm

p
p
p

The Backward Algorithm

01 A recursive state estimation algorithm

11/20/13
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The Backward Algorithm

0 Assume we have p(X, ;e 0,

The Backward Algorithm

0 Incorporate evidence via p(e,,; | X,4;)
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The Backward Algorithm
o

OSOTONG
O CEONC NGNS

01 Update the state via p(X, ;| X,)

Smoothing: p(X, e ) for 1 <k <t
.

(Xk|€1t) p( |€1k’6k+1t)

p(X ek—i—lt’elk)

plert1:t| X, er:x) p(Xileir)

= pler+1:¢|Xk) p(Xkle1x)
\—Y—}

<

Forward Algorithm

pletralXn) = D plentre Xer1|Xk)

Xi+1

= Z plert1:6| Xk+1) p(Xpet1]Xk)
Xr+1

= Z plert1]Xkt1) Plert2:4| Xit1) P(Xpr1|Xk)
Xp+1 \—Y—} k—Y—J

Emission Recursion Transmission
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Smoothing Example

p(R,) = <0.5, 0.5>

Rain, Rain, Raing
Reti | P(R | Ry)
T 0.7
0.3 @
R. | p(UdR)
T .
0.9 P(r1 |U]) P(I’2 | Uy, Uz) P(I’1 |U1 :U2)
F 0.2 0.818 0.883 2

Most Likely Explanation

Find the state sequence that makes the observed
evidence sequence most likely

argmax P(X, | e;,)
X]:t

Recursive formulation:
The most likely state sequence for X, is the most likely
state sequence for X, , followed by the transition to X,

Equivalent to Filtering algorithm except summation
replaced with max

Called the Viterbi Algorithm

11/20/13
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Dynamic Bayesian Networks

Any BN that represents a temporal probability
distribution using state variables and evidence
variables is called a Dynamic Bayesian Network

A Hidden Markov Model is the simplest type of
DBN
State is represented by a single variable
Evidence is represented by a single variable
Applications
speech recognition
handwriting recognition
gesture recognition

Approximate Inference in Dynamic BN

Recall approximate inference algorithms from
previous lecture
Direct sampling, rejection sampling, likelihood weighting

Gibbs sampling

Likelihood weighting applied to DBN (with some
modifications) is known as a Particle filter

11/20/13
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Particle Filtering

Likelihood weighting fixes the evidence variables
and samples only the non-evidence variables

Introduces a weight to correct for the fact that we're
sampling from the prior distribution instead of the
posterior distribution

weight = p(e, | Parents(e;)) * p(e,| Parents(e,)) ...

Particle Filtering

Initialize
Draw N particles (i.e. samples) for X, from the prior
distribution p(X,)
Propagate
Propagate each particle forward by sampling X,,; | X,
Weight
Weight each particle by p(e.,; | X4;)
Resample

Generate N new particles by sampling proportional to
the weights. The new particles are unweighted

11/20/13
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Particle Filtering

= Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
o |©O0T—m | ° ® . ° °
o |e% *\K ® ol o o | o
® ® ol ©® (O]
e ® [> ® | %9 "o [> ° | o%
- ; e
Particles: Particles: Particles: (New) Particles:
33) (3,2) (3,2) w=9 (3,2)
(2,3) (2,3) (2,3) w=2 (2,2)
33) (3.2) (3,2) w=9 3,2)
(3,2) (3,1) (3,1) w=4 (2,3)
33) (3,3) (3,3) w=4 33)
(3,2) (3,2) (3,2) w=9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
33) (2,3) (2,3) w=2 (2,3)
(3,3) (3,2) (3,2) w=9 (3,2)
(2,3) (2,2) (2,2) w=4 3,2)

19



