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NEURAL NETWORKS 2 

Today 

¨  Reading 
¤  AIMA 18.6-18.8 

¨  Announcements 
¤  Final project/HW5 
¤  Sandbox/Resources 
¤  Extra credit 

¨  Goals 
¤  Feed-forward neural networks 
¤  Backpropagation 
¤  Naïve Bayes classifiers 
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Supervised learning 

¨  Training set 

¨  Hypothesis class 

¨  Given training set, we want to find the hypothesis in 
the hypothesis class that “best approximates” f 
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Supervised Learning terminology 

¨  Regression 
¤ y is a real-valued number 
¤ e.g. price of a commodity, pollution levels, brain activity 

¨  Classification 
¤ y is a discrete (categorical) value 
¤ e.g. spam or not spam, 5-star ratings 

¨  Structured prediction 
¤ y is a structured object 
¤ e.g. given sentence predict parse tree, given words in a 

sentence predict POS tags 
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A single perceptron 
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Node 

Activation function 

¨  The activation function determines if the “electrical 
signal” entering the neuron is sufficient to cause it to 
fire 
¤ Threshold function – range is {0,1} 
¤ Sigmoid function – range [0,1] 
¤ Hyperbolic tangent function – range [-1,1] 
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210 Chapter 18. Learning from Examples
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Figure 18.17 FILES: . (a) The hard threshold function Threshold(z) with 0/1 output. Note that
the function is nondifferentiable at z =0. (b) The logistic function, Logistic(z) = 1

1+e−z , also known
as the sigmoid function. (c) Plot of a logistic regression hypothesis hw(x)= Logistic(w ·x) for the data
shown in Figure 18.14(b).
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Threshold versus “dummy” variable 

¨  Having a threshold T is equivalent to creating a “dummy” 
variable with value always 1 
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A perceptron network 
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Reduces to K independent perceptrons 
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Beyond perceptrons 

¨  Feed-forward neural network 
¤  Forms a directed acyclic graph (DAG) structure 
¤  Any continuous function of the inputs can be represented using a 

sufficiently large hidden layer 

¨  Recurrent neural network 
¤  The output is fed back into the inputs 
¤  Creates a dynamical system that can have “short-term memory” 

hidden layers 

Interesting project idea! 

Backpropagation 

1.  Begin with randomly initialized weights 
2.  Apply the neural network to each training example 

(each pass through examples is called an epoch) 
3.  If it misclassifies an example modify the weights 

4.  Continue until the neural network classifies all 
training examples correctly 

(Derive gradient-descent update rule) 
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Backpropagation 

Naïve Bayes Classifier 

¨  Naïve Bayes Classifier 
¤ Use for classification (i.e. y is categorical) 
¤  E.g., y = {Flu, Pneumonia, Appendicitis,…} 

y 

x1 x2 … xn 

cough = T fever = T nausea = F 
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Naïve Bayes Classifier 

¨  What are the independencies represented by this Bayesian 
network? 
¤  Also called the Idiot Bayes classifier 

¨  For this to be a valid Bayesian network, what distributions do 
we need to define? 
¤  p(Y) = The prior distribution over the possible classes 

¤  p(Xi|Y) = The conditional distribution of symptom given illness 

y 

x1 x2 … xn 

cough = T fever = T nausea = F 

Naïve Bayes Classifier 

¨  We’re interested in computing the quantity: 
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Naïve Bayes Classifier 

¨  So, given training data D={(xi,yi) | i = 1...n}, how do we 
estimate these probabilities? 

p(Y |x1, x2, . . . , xn

)

/ p(Y, x1, x2, . . . , xn

)

= p(x1|x2, . . . , xn

, Y ) . . . p(x
n

|Y )p(Y )

= p(x1|Y )p(x2|Y ) . . . p(x
n

|Y )p(Y )

= p(Y )
nY

i=1

p(x
i

|Y )

8


