
10/30/13	

1	

NEURAL NETWORKS

Recap: Decision Trees

Overfitting in Decision Trees

!  Caused by many factors
! Noisy data, limited data, spurious correlations

!  Can cause additional nodes to be added to the
decision tree

10/30/13	

2	

Learning a Decision Tree

function DECISION-TREE-LEARNING (examples, attributes, parents) returns a tree
 if examples is empty return MAJORITY_VOTE(parents)
 else if all examples have same classification return classification
 else if attributes is empty return MAJORITY_VOTE(examples)
 else

 A CHOOSE-BEST-ATTRIBUTE (examples)
 tree a new decision tree with root A
 for each value vk of A
 Sk examples with value vk for attribute A
 subtree DECISION-TREE-LEARNING(Sk, attributes-A, examples)
 add branch to tree with label (A=vk) and subtree
 return tree

Choosing the best attribute

¨  Splitting on a good attribute
¤ After the split, the examples at each branch have the same

classification

¨  Splitting on a bad attribute
¤ After the split, the examples at each branch have the same

proportion of positive and negative examples

¨  We will use entropy and information gain to formalize
what we mean by good and bad attributes

10/30/13	

3	

Entropy

¨  Entropy measures the uncertainty of
a random variable
¤  How many bits are needed to

efficiently encode the possible values
(outcomes) of a random variable?

¨  Introduced by Shannon in 1948
paper

¨  Example: flipping a coin
¤  A completely biased coin requires 0

bits of entropy
¤  A fair coin requires 1 bit of entropy
¤  How many bits are need to encode the

outcome of flipping a fair coin twice?

Entropy and Information Gain

¨  Let A be a random variable with values vk

¨  Each value vk occurs with probability p(vk)

¨  Then the entropy of A is defined as

¨  (Apply this notion of entropy to choosing the best attribute)

p(X|Y = y)
p(Y = y|X)p(X)

p(Y = y)

p(Y = y|X)p(X)

p(Y = y,X)

X

z

p(Y = y,X|Z = z) p(Z = z)

X

z

p(Y = y|Z = z)p(X|Z = z) p(Z = z)

D = {(x
i

, y
i

) | i = 1, . . . , N} where f(x
i

) = y
i

x
i

y
i

f(x
i

)

f

h 2 H

H(A) =
X

k

p(v
k

) log2

✓
1

p(v
k

)

◆

= �
X

k

p(v
k

) log2 p(v
k

)

7

10/30/13	

4	

Entropy and Information Gain

Which is a better
feature: wind or

humidity?

Overfitting in Decision Trees

!  Caused by many factors
! Noisy data, limited data, spurious correlations

!  Can cause additional nodes to be added to the
decision tree

Decision Trees: additional considerations

¨  Overfitting can be caused by many factors
¤ Noisy data, irrelevant attributes, spurious correlations, non-

determinism

¨  Can cause additional nodes to be added to the
decision tree

10/30/13	

5	

Decision Trees: additional considerations

Overfitting

Decision Trees: additional considerations

¨  Overfitting
¤ Can post-process the learned decision tree and prune

using significance testing at final nodes
¤ Cross-validation using validity set

¨  Continuous or integer-valued attributes
¤ Use ranges

¨  Continuous label y
¤ Combination of splitting and linear regression

10/30/13	

6	

Today

¨  Reading
¤ AIMA 18.6-18.8
¤ Note: 18.6 covers regression but also sets up the

mathematical background/notation for neural networks

¨  Goals
¤ Perceptron (networks)
¤ Perceptron training rule
¤ Feed-forward neural networks
¤  (Backpropagation)

Our Nervous System

Synapses

Axon

Dendrites

Synapses+
+
+
-
-

(weights)

Nodes

10/30/13	

7	

A single perceptron

Output y

Input x1

Input x2

Input x3

Input x4

w1

w2

w3

w4

p(X|Y = y)
p(Y = y|X)p(X)

p(Y = y)

p(Y = y|X)p(X)

p(Y = y,X)

X

z

p(Y = y,X|Z = z) p(Z = z)

X

z

p(Y = y|Z = z)p(X|Z = z) p(Z = z)

D = {(x
i

, y
i

) | i = 1, . . . , N} where f(x
i

) = y
i

x
i

y
i

f(x
i

)

f

h 2 H

H(A) =
X

k

p(v
k

) log2

✓
1

p(v
k

)

◆

= �
X

k

p(v
k

) log2 p(v
k

)

g

✓X

i

w
i

x
i

◆

7

Node

Activation function

¨  The activation function determines if the “electrical
signal” entering the neuron is sufficient to cause it to
fire
¤ Threshold function – range is {0,1}
¤ Sigmoid function – range [0,1]
¤ Hyperbolic tangent function – range [-1,1]

p(X|Y = y)
p(Y = y|X)p(X)

p(Y = y)

p(Y = y|X)p(X)

p(Y = y,X)

X

z

p(Y = y,X|Z = z) p(Z = z)

X

z

p(Y = y|Z = z)p(X|Z = z) p(Z = z)

D = {(x
i

, y
i

) | i = 1, . . . , N} where f(x
i

) = y
i

x
i

y
i

f(x
i

)

f

h 2 H

H(A) =
X

k

p(v
k

) log2

✓
1

p(v
k

)

◆

= �
X

k

p(v
k

) log2 p(v
k

)

g

✓X

i

w
i

x
i

◆

7

210 Chapter 18. Learning from Examples

 0

 0.5

 1

-8 -6 -4 -2 0 2 4 6 8
 0

 0.5

 1

-6 -4 -2 0 2 4 6

-2 0 2 4 6

-4-2 0 2 4 6 8 10

 0
 0.2
 0.4
 0.6
 0.8

 1

x1

x2

(a) (b) (c)

Figure 18.17 FILES: . (a) The hard threshold function Threshold(z) with 0/1 output. Note that
the function is nondifferentiable at z =0. (b) The logistic function, Logistic(z) = 1

1+e−z , also known
as the sigmoid function. (c) Plot of a logistic regression hypothesis hw(x)= Logistic(w ·x) for the data
shown in Figure 18.14(b).

10/30/13	

8	

A perceptron network

Output y1
Input x1

Input x2

Input x3

Input x4

Output yK

.

.

.

Reduces to K independent perceptrons

Example: logical operators

¨  AND: If all inputs are 1, return 1. Otherwise return 0
¨  OR: If at least one input is 1, return 1. Otherwise

return 0
¨  NOT: Return the opposite of the input
¨  XOR: If exactly one input is 1, then return 1.

Otherwise return 0

10/30/13	

9	

AND

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

T = ? Output y

Input x1

Input x2

W1 = ?

W2 = ?

AND

10/30/13	

10	

T = 2 Output y

Input x1

Input x2

W1 = 1

W2 = 1

AND

Inputs are 0 or 1

Output is 1 only if
all inputs are 1

T = ? Output y

Input x1

Input x4

W1 = ?

W4 = ?

AND

Input x2
W2 = ?

Input x3

W3 = ?

10/30/13	

11	

T = 4 Output y

Input x1

Input x4

W1 = 1

W4 = 1

AND

Input x2
W2 = 1

Input x3

W3 = 1

OR

x1 x2 x1 or x2

0 0 0

0 1 1

1 0 1

1 1 1

10/30/13	

12	

T = ? Output y

Input x1

Input x4

W1 = ?

W4 = ?

OR

Input x2
W2 = ?

Input x3

W3 = ?

T = 1 Output y

Input x1

Input x4

W1 = 1

W4 = 1

OR

Input x2
W2 = 1

Input x3

W3 = 1

Output is 1 if at least
1 of the inputs is 1

10/30/13	

13	

NOT

x1 not x1

0 1

1 0

T = ? Output y Input x1
W1 = ?

NOT

10/30/13	

14	

T = 0 Output y Input x1
W1 = -1

NOT

If input is 1, output is 0
If input is 0, output is 1

XOR

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

10/30/13	

15	

T = ? Output y

Input x1

Input x2

W1 = ?

W2 = ?

XOR

Linearly Separable

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

x1

x2

10/30/13	

16	

Linearly Separable

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

x1

x2

Linearly Separable

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

x1

x2

x1 x2 x1 or x2

0 0 0

0 1 1

1 0 1

1 1 1

x1

x2

10/30/13	

17	

Linearly Separable

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

x1

x2

x1 x2 x1 or x2

0 0 0

0 1 1

1 0 1

1 1 1

x1

x2

Perceptrons: Linearly separable functions

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

x1

x2

x1 x2 x1 or x2

0 0 0

0 1 1

1 0 1

1 1 1

x1

x2

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

x1

x2

10/30/13	

18	

Perceptron Training rule

¨  Need an algorithm for finding a set of weights
w such that
¤ The predicted output of the neural network matches

the true output for all examples in the training set
¤ Predicts a reasonable output for inputs not in the

training set

Perceptron Training Rule

1.  Begin with randomly initialized weights
2.  Apply the perceptron to each training example

(each pass through examples is called an epoch)
3.  If it misclassifies an example modify the weights
4.  Continue until the perceptron classifies all training

examples correctly

10/30/13	

19	

Perceptron Training Rule

1.  Begin with randomly initialized weights
2.  Apply the perceptron to each training example

(each pass through examples is called an epoch)
3.  If it misclassifies an example modify the weights

4.  Continue until the perceptron classifies all training
examples correctly

(Derive gradient-descent update rule)

