NEURAL NETWORKS

Recap: Decision Trees

Learning a Decision Tree

function DECISION-TREE-LEARNING (examples, attributes, parents) returns a tree
if examples is empty return MAJORITY_VOTE(parents)
else if all examples have same classification return classification
else if attributes is empty return MAJORITY_VOTE(examples)
else
$\mathrm{A} \longleftarrow$ CHOOSE-BEST-ATTRIBUTE (examples)
tree \longleftarrow a new decision tree with root A
for each value v_{k} of A
$\mathrm{S}_{\mathrm{k}} \quad \longleftarrow$ examples with value v_{k} for attribute A
subtree \longleftarrow DECISION-TREE-LEARNING(S_{k}, attributes-A, examples) add branch to tree with label $\left(A=v_{k}\right)$ and subtree
return tree

Choosing the best attribute

Splitting on a good attribute

\square After the split, the examples at each branch have the same classification

Splitting on a bad attribute

\square After the split, the examples at each branch have the same proportion of positive and negative examples

We will use entropy and information gain to formalize what we mean by good and bad attributes

Entropy

Entropy measures the uncertainty of a random variable

- How many bits are needed to efficiently encode the possible values (outcomes) of a random variable?
\square Introduced by Shannon in 1948 paper
\square Example: flipping a coin
\square A completely biased coin requires 0 bits of entropy
- A fair coin requires 1 bit of entropy

- How many bits are need to encode the outcome of flipping a fair coin twice?

Entropy and Information Gain

Let A be a random variable with values v_{k}
Each value v_{k} occurs with probability $\mathrm{p}\left(\mathrm{v}_{\mathrm{k}}\right)$
Then the entropy of A is defined as

$$
\begin{aligned}
H(A) & =\sum_{k} p\left(v_{k}\right) \log _{2}\left(\frac{1}{p\left(v_{k}\right)}\right) \\
& =-\sum_{k} p\left(v_{k}\right) \log _{2} p\left(v_{k}\right)
\end{aligned}
$$

(Apply this notion of entropy to choosing the best attribute)

Decision Trees: additional considerations

\square Overfitting can be caused by many factors
\square Noisy data, irrelevant attributes, spurious correlations, nondeterminism

Can cause additional nodes to be added to the

Decision Trees: additional considerations

Decision Trees: additional considerations

Overfitting\square Can post-process the learned decision tree and prune using significance testing at final nodes
\square Cross-validation using validity set
\square Continuous or integer-valued attributes
\square Use ranges
\square Continuous label y
Combination of splitting and linear regression

Today

Reading

- AIMA 18.6-18.8
\square Note: 18.6 covers regression but also sets up the mathematical background/notation for neural networks

Goals
\square Perceptron (networks)
\square Perceptron training rule

- Feed-forward neural networks
\square (Backpropagation)

Our Nervous System

A single perceptron

Activation function

\square The activation function determines if the "electrical signal" entering the neuron is sufficient to cause it to fire
\square Threshold function - range is $\{0,1\}$
\square Sigmoid function - range $[0,1]$
\square Hyperbolic tangent function - range [-1,1]

Example: logical operators

AND: If all inputs are 1, return 1. Otherwise return 0 OR: If at least one input is 1 , return 1 . Otherwise return 0
NOT: Return the opposite of the input
XOR: If exactly one input is 1 , then return 1 .
Otherwise return 0

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

OR

x_{1}	x_{2}	x_{1} or x_{2}
0	0	0
0	1	1
1	0	1
1	1	1

OR

NOT

x_{1}	$\operatorname{not} x_{1}$
0	1
1	0

NOT

Input $x_{1} \xrightarrow{W_{1}=?} T=$? \longrightarrow Output y

NOT

 If input is 0 , output is 1

Linearly Separable

Linearly Separable

$$
\begin{array}{c|c|cc}
x_{1} & x_{2} & x_{1} \text { and } x_{2} \\
\hline 0 & 0 & 0 & \\
0 & 1 & 0 & \\
1 & 0 & 0 & \\
1 & 1 & 1 &
\end{array}
$$

Linearly Separable

$$
\begin{array}{c|c|cc|c|cc}
x_{1} & x_{2} & x_{1} \text { and } x_{2} & & x_{1} & x_{2} & x_{1} \text { or } x_{2} \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 &
\end{array}
$$

Perceptrons: Linearly separable functions

x_{1}	x_{2}	x_{1} and x_{2}	x_{1}	x_{2}	x_{1} or x_{2}	x_{1}	x_{2}	x_{1} xor x_{2}	
0	0	0	0	0	0	0	0	0	0
0	1	0	0	1	1	0	1	1	0
1	0	0	1	0	1	1	0	1	0
1	1	1	1	1	1	1	1	0	0

Perceptron Training rule

Need an algorithm for finding a set of weights w such that

- The predicted output of the neural network matches the true output for all examples in the training set
\square Predicts a reasonable output for inputs not in the training set

Perceptron Training Rule

1. Begin with randomly initialized weights
2. Apply the perceptron to each training example (each pass through examples is called an epoch)
3. If it misclassifies an example modify the weights
4. Continue until the perceptron classifies all training examples correctly

Perceptron Training Rule

1. Begin with randomly initialized weights
2. Apply the perceptron to each training example (each pass through examples is called an epoch)
3. If it misclassifies an example modify the weights
4. Continue until the perceptron classifies all training examples correctly
(Derive gradient-descent update rule)
