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NEURAL NETWORKS 

Recap: Decision Trees 

Overfitting in Decision Trees 

!  Caused by many factors 
! Noisy data, limited data, spurious correlations 

!  Can cause additional nodes to be added to the 
decision tree 
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Learning a Decision Tree 

function DECISION-TREE-LEARNING (examples, attributes, parents) returns a tree 
 if examples is empty return MAJORITY_VOTE(parents) 
 else if all examples have same classification return classification 
 else if attributes is empty return MAJORITY_VOTE(examples) 
 else 

  A    CHOOSE-BEST-ATTRIBUTE (examples) 
  tree   a new decision tree with root A 
  for each value vk of A 
   Sk    examples with value vk for attribute A 
   subtree   DECISION-TREE-LEARNING(Sk, attributes-A, examples) 
   add branch to tree with label (A=vk) and subtree 
  return tree    

Choosing the best attribute 

¨  Splitting on a good attribute 
¤ After the split, the examples at each branch have the same 

classification 
 

¨  Splitting on a bad attribute  
¤ After the split, the examples at each branch have the same 

proportion of positive and negative examples 

¨  We will use entropy and information gain to formalize 
what we mean by good and bad attributes 
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Entropy 

¨  Entropy measures the uncertainty of 
a random variable 
¤  How many bits are needed to 

efficiently encode the possible values 
(outcomes) of a random variable? 

¨  Introduced by Shannon in 1948 
paper 

¨  Example: flipping a coin 
¤  A completely biased coin requires 0 

bits of entropy 
¤  A fair coin requires 1 bit of entropy 
¤  How many bits are need to encode the 

outcome of flipping a fair coin twice? 
 

Entropy and Information Gain 

¨  Let A be a random variable with values vk 

¨  Each value vk occurs with probability p(vk) 

¨  Then the entropy of A is defined as 

¨  (Apply this notion of entropy to choosing the best attribute)  
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Entropy and Information Gain 

Which is a better 
feature: wind or 

humidity? 

Overfitting in Decision Trees 

!  Caused by many factors 
! Noisy data, limited data, spurious correlations 

!  Can cause additional nodes to be added to the 
decision tree 

Decision Trees: additional considerations 

¨  Overfitting can be caused by many factors 
¤ Noisy data, irrelevant attributes, spurious correlations, non-

determinism 

¨  Can cause additional nodes to be added to the 
decision tree 
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Decision Trees: additional considerations 

Overfitting 

Decision Trees: additional considerations 

¨  Overfitting 
¤ Can post-process the learned decision tree and prune 

using significance testing at final nodes 
¤ Cross-validation using validity set 

¨  Continuous or integer-valued attributes 
¤ Use ranges 

¨  Continuous label y 
¤ Combination of splitting and linear regression 
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Today 

¨  Reading 
¤ AIMA 18.6-18.8 
¤ Note: 18.6 covers regression but also sets up the 

mathematical background/notation for neural networks 

¨  Goals 
¤ Perceptron (networks) 
¤ Perceptron training rule 
¤ Feed-forward neural networks 
¤  (Backpropagation) 

Our Nervous System 
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A single perceptron 

Output y 

Input x1 

Input x2 

Input x3 

Input x4 

w1 

w2 

w3 

w4 

p(X|Y = y)
p(Y = y|X)p(X)

p(Y = y)

p(Y = y|X)p(X)

p(Y = y,X)

X

z

p(Y = y,X|Z = z) p(Z = z)

X

z

p(Y = y|Z = z)p(X|Z = z) p(Z = z)

D = {(x
i

, y
i

) | i = 1, . . . , N} where f(x
i

) = y
i

x
i

y
i

f(x
i

)

f

h 2 H

H(A) =
X

k

p(v
k

) log2

✓
1

p(v
k

)

◆

= �
X

k

p(v
k

) log2 p(v
k

)

g

✓X

i

w
i

x
i

◆

7

Node 

Activation function 

¨  The activation function determines if the “electrical 
signal” entering the neuron is sufficient to cause it to 
fire 
¤ Threshold function – range is {0,1} 
¤ Sigmoid function – range [0,1] 
¤ Hyperbolic tangent function – range [-1,1] 
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210 Chapter 18. Learning from Examples

 0

 0.5

 1

-8 -6 -4 -2  0  2  4  6  8
 0

 0.5

 1

-6 -4 -2  0  2  4  6

-2  0  2  4  6

-4-2 0 2 4 6 8 10

 0
 0.2
 0.4
 0.6
 0.8

 1

x1

x2

(a) (b) (c)

Figure 18.17 FILES: . (a) The hard threshold function Threshold(z) with 0/1 output. Note that
the function is nondifferentiable at z =0. (b) The logistic function, Logistic(z) = 1

1+e−z , also known
as the sigmoid function. (c) Plot of a logistic regression hypothesis hw(x)= Logistic(w ·x) for the data
shown in Figure 18.14(b).
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A perceptron network 

Output y1 
Input x1 

Input x2 

Input x3 

Input x4 

Output yK 

. 

. 

. 

Reduces to K independent perceptrons 

Example: logical operators   

¨  AND: If all inputs are 1, return 1. Otherwise return 0 
¨  OR: If at least one input is 1, return 1. Otherwise 

return 0 
¨  NOT: Return the opposite of the input 
¨  XOR: If exactly one input is 1, then return 1. 

Otherwise return 0 
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AND 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

T = ? Output y 

Input x1 

Input x2 

W1 = ? 

W2 = ? 

AND 
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T = 2 Output y 

Input x1 

Input x2 

W1 = 1 

W2 = 1 

AND 

Inputs are 0 or 1 

Output is 1 only if 
all inputs are 1 

T = ? Output y 

Input x1 

Input x4 

W1 = ? 

W4 = ? 

AND 

Input x2 
W2 = ? 

Input x3 

W3 = ? 
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T = 4 Output y 

Input x1 

Input x4 

W1 = 1 

W4 = 1 

AND 

Input x2 
W2 = 1 

Input x3 

W3 = 1 

OR 

x1 x2 x1 or x2 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
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T = ? Output y 

Input x1 

Input x4 

W1 = ? 

W4 = ? 

OR 

Input x2 
W2 = ? 

Input x3 

W3 = ? 

T = 1 Output y 

Input x1 

Input x4 

W1 = 1 

W4 = 1 

OR 

Input x2 
W2 = 1 

Input x3 

W3 = 1 

Output is 1 if at least 
1 of the inputs is 1 
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NOT 

x1 not x1 

0 1 

1 0 

T = ? Output y Input x1 
W1  = ? 

NOT 
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T = 0 Output y Input x1 
W1  = -1 

NOT 

If input is 1, output is 0 
If input is 0, output is 1 

XOR 

x1 x2 x1 xor x2 

0 0 0 

0 1 1 

1 0 1 

1 1 0 
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T = ? Output y 

Input x1 

Input x2 

W1 = ? 

W2 = ? 

XOR 

Linearly Separable 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

x1 

x2 
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Linearly Separable 

x1 x2 x1 and x2 
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Linearly Separable 
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Perceptrons: Linearly separable functions 
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Perceptron Training rule 

¨  Need an algorithm for finding a set of weights 
w such that 
¤ The predicted output of the neural network matches 

the true output for all examples in the training set 
¤ Predicts a reasonable output for inputs not in the 

training set 

Perceptron Training Rule 

1.  Begin with randomly initialized weights 
2.  Apply the perceptron to each training example 

(each pass through examples is called an epoch) 
3.  If it misclassifies an example modify the weights 
4.  Continue until the perceptron classifies all training 

examples correctly 
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Perceptron Training Rule 

1.  Begin with randomly initialized weights 
2.  Apply the perceptron to each training example 

(each pass through examples is called an epoch) 
3.  If it misclassifies an example modify the weights 

4.  Continue until the perceptron classifies all training 
examples correctly 

(Derive gradient-descent update rule) 


