
9/12/13&

1&

LOCAL SEARCH 

Today 

!  Reading 
! AIMA Chapter 4.1-4.2, 5.1-5.2 

!  Goals 
! Local search algorithms 

" hill-climbing search 
"  simulated annealing 
"  local beam search 
" genetic algorithms 
" gradient descent and Newton-Rhapson 

!  Introduce adversarial search 



9/12/13&

2&

Recall the N-Queens problem 

incremental 
formulation 

… 

… 

N-Queens alternative approach 

complete state 
formulation 



9/12/13&

3&

!  The basic idea: 
1.  Randomly initialize (complete) state 
2.  If not goal state,  

a.  make local modification to state to generate a neighbor state OR 
b.  enumerate all neighbor states and choose the best 

3.  Repeat step 2 until goal state is found (or out of time) 
 

!  Requires the ability to quickly: 
!  Generate a random (probably-not-optimal) state 
!  Evaluate the quality of a state 
!  Move to other states (well-defined neighborhood function)  

Local search 

4-Queens problem 

!  States: 4 queens in 4 columns 
!  Operations: move queen in column  
!  Goal test: no attacks  
!  Evaluation: h(n) = number of attacks  



9/12/13&

4&

Graph Coloring 

1.  Start with random coloring of nodes  
2.  If not goal state, change color of one node 
3.  Repeat 2  
 

74 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps
(Tue Nov 3 16:22:25 2009). (a) The principal states and territories of Australia. Coloring this map
can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region
so that no neighboring regions have the same color. (b) The map-coloring problem represented as a
constraint graph.

Local Search Algorithms 

!  Useful when path to the goal state is irrelevant 
!  Keep track of “current” state only 
!  Explore nearby “neighbor” (successor) states 
!  Algorithms include: 

! Hill-climbing 
! Simulated annealing 
! Local beam search 
! Genetic algorithms 
! Gradient descent (Newton-Rhapson) 



9/12/13&

5&

Local Search Algorithms 

 

Hill-climbing Search 

!  "Like climbing Everest in thick fog with amnesia" 
 



9/12/13&

6&

Hill-climbing Search: 8-queens problem 

!  h = number of pairs of queens that are attacking each other 
!  h = 17 for the above state 

Hill-climbing search: 8-queens problem 

!  A local minimum with h = 1 



9/12/13&

7&

Problems with hill-climbing? 

Hill-climbing Performance 

!  Complete – No 

!  Optimal - No 

!  Time – Depend 

!  Space – O(1) 



9/12/13&

8&

Hill-climbing Variants 

!  Stochastic Hill Climbing 
! Randomly chooses uphill successors 
! Probability of selection proportional to steepness 

!  First-choice hill climbing 
! Choose first generated uphill successor 

!  Random-restart hill climbing 
! Runs multiple hill-climbing searches from random initial 

states 
 

Simulated annealing search 

!  Idea: escape local maxima by allowing some "bad" 
moves but gradually decrease their frequency 

 



9/12/13&

9&

Local Beam Search 

!  Idea: Keep as many states in memory as possible 
! Start with k randomly generated states 
! Generate all successors of all k states 
!  If goal is found, stop. Else select the k best successors from 

the complete list of successors and repeat. 

!  What’s one possible shortcoming of this approach? 
 

Local Beam Search 

!  Idea: Keep as many states in memory as possible 
! Start with k randomly generated states 
! Generate all successors of all k states 
!  If goal is found, stop. Else select the k best successors from 

the complete list of successors and repeat. 
 

!  Possible problem: All k states can become concentrated 
in the same part of the search space 

!  Stochastic beam search 
! Choose k successors at random where the probability of 

selection is proportional to its objective function value 



9/12/13&

10&

Genetic Algorithms 

!  Generate a successor state by combining two 
parent states 
! Begin with k randomly generated states (population) 

represented as strings over some finite alphabet 

! Evaluate the fitness of each state via fitness function 
(higher values = better state) 

! Repeat k times: 
" Randomly select 2 states proportional to their fitness 

" Randomly pick a crossover point and produce a new state 

" Randomly mutate each location of the new state 

Genetic Algorithms 

!  Fitness function: number of non-attacking pairs of queens  
!  24/(24+23+20+11) = 31% 

!  23/(24+23+20+11) = 29% etc 



9/12/13&

11&

Genetic Algorithms 

3275411 24748552 32748552 

Genetic Algorithms 

!  Crossover can produce an offspring that is in an entirely 
different area of the search space than either parent 
!  Sometimes offspring is outside of the “feasible” or “evaluable” 

region 
 

!  Either replace entire population at each step 
(generational GA) or replace just a few (low fitness) 
members of the population (steady-state GA) 

!  The benefit comes from having a representation where 
contiguous blocks are actually meaningful 



9/12/13&

12&

Gradient-based methods 

Gradient-based methods 

!  Gradient-based methods are similar to hill-climbing 
!  Find the best direction and take it 

!  Nevertheless, they are widely used 
 

“Their operation is similar to a blind man walking up a hill, 
whose only knowledge of of the hill comes from what 
passes under his feet. If the hill is predictable in some 
fashion, he will reach the top, but it is easy to imagine 

confounding terrain” 
 

- Goffe et al., 1994 
 



9/12/13&

13&

Newton-Rhapson Method 

!  Newton-Rhapson is a method for finding roots of a function, i.e. 
finding x such that g(x) = 0 

g(x) 

x0 

Step 1: Make an initial guess x0 
Step 2: Compute new point x1 using the update rule: 
 
 
 
Intuition behind the update rule: 
The tangent line at x0 is a linear approximation of g(x) at the 
point x0. Since the tangent line is an approximation of g(x), 
the root of the tangent line is probably a better estimate of 
the root of g(x) than our initial guess x0. So, to find the root of 
the tangent line we use the formula for slope and then solve 
for x1: 
 
 
Using a bit of algebra, we solve for x1 which gives us the 
above update rule. We then iterate this process until we 
converge to the root of g(x). 

(x0, y0) 

(x1, y1) 

p(E) =
X

(x1,...,xn)2E

p(x1, . . . , xn

)

✏

h̄ ⌘ 1

S

X

s

h(s) // pronounced h-bar

Var(h) =
1

S

X

s

�
h(s)� h̄

�2

p(X = x) =
X

y

P (X = x, Y = y)

p(X = x|Y = y) =
p(X = x, Y = y)

p(Y = y)

p(X = x, Y = y) = p(X = x|Y = y) p(Y = y)

p(W = s|T = c) =
p(W = s, T = c)

p(T = c)
=

0.2

0.5
= 0.4

p(W = r|T = c) =
p(W = r, T = c)

p(T = c)
=

0.3

0.5
= 0.6

x

n+1 = x

n

� g(x
n

)

g

0(x
n

)

2

p(E) =
X

(x1,...,xn)2E

p(x1, . . . , xn

)

✏

h̄ ⌘ 1

S

X

s

h(s) // pronounced h-bar

Var(h) =
1

S

X

s

�
h(s)� h̄

�2

p(X = x) =
X

y

P (X = x, Y = y)

p(X = x|Y = y) =
p(X = x, Y = y)

p(Y = y)

p(X = x, Y = y) = p(X = x|Y = y) p(Y = y)

p(W = s|T = c) =
p(W = s, T = c)

p(T = c)
=

0.2

0.5
= 0.4

p(W = r|T = c) =
p(W = r, T = c)

p(T = c)
=

0.3

0.5
= 0.6

x

n+1 = x

n

� g(x
n

)

g

0(x
n

)

g

0(x0) =
y1 � y0

x1 � x0

2

remember me?! 

Newton-Rhapson applied to optimization 

!  When we’re minimizing a function we want to find the point x* such that 
f(x*) < f(x) for all x 

!  Recall from calculus that the slope at such a point x* is zero, i.e. f’(x*) = 0 

!  So we can restate the problem as follows: we want to find the point x* such 
that f’(x*) = 0 

!  Now we can use the Newton-Rhapson method to find the root of the first 
derivative f’(x). The update rule in this case is: 

!  The function f’’(x) is the second derivative. 

!  Ask yourself: Why does the second derivative appear in this formula? 

x

n+1 = x

n

� f

0(x
n

)

f

00(x
n

)

3



9/12/13&

14&

Newton-Rhapson applied to optimization 

!  In the multivariate case, the update rule looks like this: 

!  The second derivative is given by the Hessian matrix (denoted as H) which 
is a square matrix that contains the second-order partial derivatives 

!  The first derivative is represented by the gradient (denoted using the 
upside down triangle) 

x

n+1 = x

n

� f

0(x
n

)

f

00(x
n

)

3

x
n+1 = x

n

� f 0(x
n

)

f 00(x
n

)

x
n+1 = x

n

�H�1
f

(x
n

)r
f

(x
n

)

3

univariate multivariate 

Gradient Ascent (Descent) 

!  Sometimes the Hessian is too computationally expensive to compute or it cannot be 
inverted 

!  In this case, we can “replace” the second derivative with a step size constant � 

 

!  The gradient (the upside down triangle) gives the direction of steepest ascent. The 
step cost (gamma) determines how far we step in that direction.  

!  For minimization, we would change the addition to subtraction (i.e. we want to move 
in the direction opposite to the direction of steepest ascent) 

!  Some information about the step size gamma: 
!  The user can set the step size to any (typically positive) value 
!  A step size too small results in slow progress. A step size too large can overshoot the minimum/

maximum. 
!  The step size can be determined using a line search (think binary search). However, make sure 

that the line search itself isn’t computationally expensive 
!  The step size can change at each iteration. It doesn’t have to stay the same 

!  The stopping criteria: gradient sufficiently close to zero, or difference between new and 
old points below threshold 

x a randomly selected value x x+ �rF (x)



9/12/13&

15&

Gradient Ascent (Descent) 

function GRADIENT-ASCENT(F,�) returns solution 
 

  
 

 while stopping criteria 
   
 return  

rF  COMPUTE-GRADIENT(F )

x a randomly selected value x x+ �rF (x)

x a randomly selected value x x+ �rF (x)

x

Gradient Ascent (Descent) 



9/12/13&

16&

Local search summary 

!  Hill-climbing search 
!  Stochastic hill-climbing search 
!  First-choice 
!  Random restart hill-climbing 

!  Simulated annealing 
!  Local beam search 

!  Stochastic local beam search 

!  Genetic algorithms 
!  Gradient-based methods 

!  Newton-Rhapson 
!  Gradient ascent (descent) 


