

Local search

The basic idea:

- 1. Randomly initialize (complete) state
- 2. If not goal state,
 - a. make local modification to state to generate a neighbor state OR
 - b. enumerate all neighbor states and choose the best
- 3. Repeat step 2 until goal state is found (or out of time)
- □ Requires the ability to quickly:
 - Generate a random (probably-not-optimal) state
 - Evaluate the quality of a state
 - Move to other states (well-defined neighborhood function)

Hill-climbing Variants

- Stochastic Hill Climbing
 Randomly chooses uphill successors
 - Probability of selection proportional to steepness
- First-choice hill climbing
 Choose first generated uphill successor
- Random-restart hill climbing
 Runs multiple hill-climbing searches from random initial states

- Idea: Keep as many states in memory as possible
 - Start with k randomly generated states
 - Generate all successors of all k states
 - If goal is found, stop. Else select the k best successors from the complete list of successors and repeat.
- □ What's one possible shortcoming of this approach?

Newton-Rhapson applied to optimization

- □ When we're minimizing a function we want to find the point x^* such that $f(x^*) < f(x)$ for all x
- □ Recall from calculus that the slope at such a point x^* is zero, i.e. $f'(x^*) = 0$
- So we can restate the problem as follows: we want to find the point x^{*} such that f'(x^{*}) = 0
- Now we can use the Newton-Rhapson method to find the root of the first derivative f'(x). The update rule in this case is:

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

- \Box The function f"(x) is the second derivative.
- □ Ask yourself: Why does the second derivative appear in this formula?

Local search summary

Hill-climbing search

Stochastic hill-climbing search

- First-choice
- Random restart hill-climbing
- □ Simulated annealing
- Local beam search
 - Stochastic local beam search
- □ Genetic algorithms
- □ Gradient-based methods
 - Newton-Rhapson
 - Gradient ascent (descent)