
9/10/13	

1	

INFORMED SEARCH AND
HEURISTICS

Recap: Uninformed Search

¨  We have an rational agent. But how does the
agent actually achieve its goal?

¨  Search for a solution - a sequence of actions that
leads from the initial state to the goal state

¨  Uninformed search algorithms
¤ Uses no information beyond problem

¤ Discrete environment

¤ Offline exploration

9/10/13	

2	

Recap: State space graph vs. Search tree

14 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

State space graph

18 Chapter 3. Solving Problems by Searching

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Lugoj AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Arad

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Figure 3.6 FILES: figures/search-map.eps (Tue Nov 3 16:23:38 2009). Partial search trees for
finding a route from Arad to Bucharest. Nodes that have been expanded are shaded; nodes that have
been generated but not yet expanded are outlined in bold; nodes that have not yet been generated are
shown in faint dashed lines.

Search tree

Node
depth = 3
cost = 280
state = Arad

parent, action

Recap: Tree Search

function TREE-SEARCH(problem, strategy) returns a solution or failure

 initialize the frontier using the initial state of problem

 loop do

 if the frontier is empty return failure

 choose leaf node according to strategy and remove from frontier

 if node contains goal state return solution

 expand chosen node and add resulting nodes to frontier

9/10/13	

3	

Recap: Graph-search

function GRAPH-SEARCH(problem, strategy) returns a solution or failure

 initialize the frontier using the initial state of problem

 initialize explored set to empty

 loop do

 if the frontier is empty return failure

 choose leaf node according to strategy and remove from frontier

 if node contains goal state return solution

 add node to explored set

 expand chosen node and add resulting nodes to frontier
 only if not in frontier or explored set

Recap: analyzing search algorithms

¨  Time (Big-O)
¤ approximately the number of nodes processed (frontier

plus explored lists)
¨  Space (Big-O)

¤  the max # of nodes stored in memory at any time
¨  Complete (yes/no)

¤  If a solution exists, will we find it?
¨  Optimal (yes/no)

¤  If we return a solution, will it be the best/optimal
solution, i.e. solution with lowest path cost

9/10/13	

4	

Recap: analyzing search algorithms
¨  When analyzing time and space, it is useful to define some notation:

¤  b – branching factor, i.e. max number of successors of any node

¤  d – depth of the shallowest goal node

¤  m – maximum possible depth of search tree

Number of nodes
b0 = 1 node

b1 nodes

b2 nodes

bd nodes

bm nodes

Depth
0

1

2

d

m

…

…

Recap: Breadth-first search

¨  Strategy: choose shallowest unexpanded node

¨  Implementation: FIFO queue

¨  Finds the shallowest goal node

¨  Time
¤  Processes 1 + b + b2 + … + bd = O(bd) nodes

¨  Space
¤  In the worst case, the goal node is the last node at depth d = O(bd)

¨  Complete?
¤  Yes, if b is finite

¨  Optimal?
¤  Yes, if the path cost to a node is a non-decreasing function of the depth of the node

¤  rule-of-thumb: use if step costs are constant

1

2 3

4 5 6 7

b=2

9/10/13	

5	

Recap: Depth-first search

¨  Strategy: choose deepest unexpanded node

¨  Implementation: LIFO queue (a.k.a. stack)

¨  Finds the leftmost goal node

¨  Time
¤  Processes 1 + b + b2 + … + bm = O(bm) nodes

¨  Space
¤  Keep track of only O(bm) nodes

¨  Complete?
¤  Yes, if the state space is finite and no loops

¨  Optimal?
¤  No, finds the leftmost goal node

1

2 5

3 4 6 7

b=2

Improvements?

¨  Can we combined the optimality and completeness of
BFS with the memory of DFS?

+ =

9/10/13	

6	

Recap: Depth limited DFS

¨  DFS, but with a depth limit L specified
¤ Nodes at depth L are treated as if they have no successors
¤ We only search down to depth L

¨  Time?
¤ O(bL)

¨  Space?
¤ O(bL)

¨  Complete?
¤ No, if solution is deeper than L

¨  Optimal
¤ No, for same reasons DFS isn’t

Recap: Iterative deepening search (IDS)

for L=0, 1, 2, …
run depth-limited DFS
if solution found return result

¨  Blends the benefits of BFS and DFS
¤  similar to BFS, all nodes at depth L searched before L+1
¤ but has the memory requirements of DFS

¨  Will find the solution when L is the depth of the
shallowest goal

9/10/13	

7	

Iterative deepening search L =0

Iterative deepening search L =1

9/10/13	

8	

Iterative deepening search L =2

Iterative deepening search L =3

9/10/13	

9	

Time complexity for IDS

¨  L = 0: 1
¨  L = 1: 1 + b
¨  L = 2: 1 + b + b2
¨  L = 3: 1 + b + b2 + b3
¨  …
¨  L = d: 1 + b + b2 + b3 + … + bd
¨  Overall:

¤  d(1) + (d-1)b + (d-2)b2 + (d-3)b3 + … + bd

¤ O(bd)
¤  the cost of the repeat of the lower levels is subsumed by the

cost at the highest level

Analysis of IDS

¨  Time
¤ O(bd)

¨  Space
¤ O(bd)

¨  Complete?
¤ Yes

¨  Optimal?
¤ Yes

9/10/13	

10	

Recap: Uniform-cost search

¨  Strategy: choose node with lowest path cost
¨  Implementation: priority queue

23

Sibiu Fagaras

Pitesti

Rimnicu Vilcea

Bucharest

99

80

97

101

211

Figure 3.15 FILES: figures/romania-subgraph.eps (Tue Nov 3 13:48:07 2009). Part of the Ro-
mania state space, selected to illustrate uniform-cost search.

Sibiu, 0

Rimnicu Vilcea, 80 Fagaras, 99

Pitesti, 177 Bucharest, 310

Bucharest, 278
What solution would BFS

have returned?

Summary of algorithms

C* is the path cost of the optimal solution
 is the minimum step cost
C*/ then is the average depth of the solution

p(E) =
X

(x1,...,xn)2E

p(x1, . . . , xn

)

✏

2

p(E) =
X

(x1,...,xn)2E

p(x1, . . . , xn

)

✏

2

9/10/13	

11	

Today

¨  Reading
¤ AIMA Chapter 3

¨  Goals
¤  Informed search algorithms

n Greedy best-first search
n A-star search

¤ Characteristics of heuristics
¤ Creating heuristics for problems

Informed search

¨  Use information beyond the problem to guide the
search process to promising regions

¨  Define an evaluation function f(n) for each node n

¤ estimates “desirability” of node

¤ choose most desirable node from frontier (priority queue)

¨  Choices for f(n)
¤ g(n) = distance from start node

¤ h(n) = estimate of distance to goal node (heuristic function)

9/10/13	

12	

Informed search

¨  Recall for uninformed search
¤  FIFO queue – BFS

¤  LIFO queue – DFS

¤  priority queue with g(n) (distance from start state) – UCS

¨  For informed search
¤  priority queue with f(n) = g(n) – UCS

¤  priority queue with f(n) = h(n) – Greedy best-first search

¤  priority queue with f(n) = g(n) + h(n) – A* (A-star) search

g(n) = distance from start h(n) = estimate to goal

Heuristic functions

¨  An heuristic function is an estimate of cost from n to
the goal

¨  Example: straight-line distance

27

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Drobeta
Craiova

Fagaras

Iasi

 0
160
242
161

77
151

366

244
226

176

241

253
329
80

199

380
234

374

100
193

Figure 3.22 FILES: figures/romania-sld.eps (Tue Nov 3 16:23:37 2009). Values of hSLD—
straight-line distances to Bucharest.

14 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

h(n) = straight-line distance

9/10/13	

13	

Greedy best-first search

¨  Define f(n) = h(n)
¨  Expand the node that seems closest to the goal
¨  What could possibly go wrong?

Path to Bucharest

14 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

9/10/13	

14	

Greedy best-first search example

Greedy best-first search example

9/10/13	

15	

Greedy best-first search example

Greedy best-first search example

9/10/13	

16	

Path to Bucharest

14 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

A* search

¨  Greedy best-first search considers only cost to goal
¤ Leads confidently to the (wrong) solution

¨  Idea: avoid expanding paths that are already
expensive

¨  Evaluation function f(n) = g(n) + h(n)

g(n) = distance from start h(n) = estimate to goal

9/10/13	

17	

A* search example

A* search example

9/10/13	

18	

A* search example

A* search example

9/10/13	

19	

A* search example

A* search example

9/10/13	

20	

A* search: conditions for optimality

¨  A heuristic h(n) is admissable if it never overestimates the
cost to the goal

 0 ≤ h(n) ≤ h*(n) h*(n) is true cost to goal

¨  A heuristic h(n) is consistent if

 h(n) ≤ c(n, a, n’) + h(n’) n’ is a successor

¨  Tree-search version of A* is optimal if h(n) is admissable

¨  Graph-search version of A* is optimal if h(n) is consistent

Properties of A* search

¨  A* expands

¤  all nodes with f(n) < C*

¤  some nodes with f(n) = C*

¤  no nodes with f(n) > C*

¨  Optimally efficient

¨  Complete if finite number of nodes with f(n) ≤ C*

30 Chapter 3. Solving Problems by Searching

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Figure 3.25 FILES: figures/f-circles.eps (Tue Nov 3 16:22:45 2009). Map of Romania showing
contours at f = 380, f = 400, and f = 420, with Arad as the start state. Nodes inside a given contour
have f -costs less than or equal to the contour value.

9/10/13	

21	

Creating admissable heuristic functions

¨  How do we construct a heuristic function that doesn’t
overestimate the cost to the goal?

¨  What are some ideas for heuristic functions?

Creating admissable heuristic functions

¨  Two-well used heuristics:
¤  h1 = number of misplaced tiles
¤  h2 = sum of the distances of the tiles from goal positions

(Manhattan distance)

Why are these admissable?

9/10/13	

22	

Creating admissable heuristic functions

¨  Often admissable heuristics are solutions to relaxed problems with
fewer restrictions

¨  A tile can move from square A to square B if
¤  A is horizontally or vertically adjacent to B
¤  B is blank

¨  Pick up tiles and place in the correct spot
¤  Induces h1 heuristic, i.e. number tiles out of place

Number nodes expanded for solution depth d

d = 4 d = 8 d= 12

IDS 112 6384 3.6 million

A*(h1) 13 39 227

Creating admissable heuristic functions

¨  Often admissable heuristics are solutions to relaxed problems with
fewer restrictions

¨  A tile can move from square A to square B if
¤  A is horizontally or vertically adjacent to B
¤  B is blank

¨  Induces h1 heuristic, i.e. number of tiles out of place
¤  Allows you to pick up the tiles and place in the correct spot

Number nodes expanded for solution depth d

d = 4 d = 8 d= 12

IDS 112 6384 3.6 million

A*(h1) 13 39 227

relax the
rules

9/10/13	

23	

Creating admissable heuristic functions

¨  Often admissable heuristics are solutions to relaxed problems with
fewer restrictions

¨  A tile can move from square A to square B if
¤  A is horizontally or vertically adjacent to B
¤  B is blank

¨  Induces h2 heuristic, i.e. sum of distances to goal position
¤  Allows you to move a tile to an adjacent square

Number nodes expanded for solution depth d

d = 4 d = 8 d= 12

IDS 112 6384 3.6 million

A*(h1) 13 39 227

A*(h2) 12 25 73

relax the
rules

Creating admissable heuristic functions

Number nodes expanded for solution depth d

d = 4 d = 8 d= 12

IDS 112 6384 3.6 million

A*(h1) 13 39 227

A*(h2) 12 25 73

expands
fewer
nodes

9/10/13	

24	

Creating admissable heuristic functions

¨  Some heuristics are better than others

¤  If h1(n) ≤ h2(n) ≤ h*(n) then h2 dominates h1

¤ Manhattan distance dominates tiles out of place

¤ A-star search using h2 will never expand more nodes

than A-star search using h1

¤ Can combine admissable heuristics using max

Informed search summary

¨  Uniform-cost search considers only the cost from the start node

¨  Greedy best-first search considers only the (estimate of the) cost

to the goal node

¤  Confidently heads straight to the (wrong) solution

¨  A* search considers both cost from start and estimate to goal

¤  A* is optimal with admissable/consistent heuristic

¨  A good heuristic is the key

¤  Consider solutions to relaxed problems

