INFERENCE IN BAYESIAN NETWORKS

Today

\square Reading

- AIMA 14.4-14.5
\square Goals
\square Reading independencies
\square Exact inference
\square Approximate inference
\square Case Study: Latent Dirichlet Allocation

Examples of Bayesian Networks

Constructing a Bayesian Network

(MaryCalls, JohnCalls, Alarm, Burglary, Earthquake)

(a)

(b)

Connection patterns and independence

Linear connection: The two end variables are dependent on each other. The middle variable renders them independent.
\square Converging connection: The two end variables are independent of each other. The middle variable renders them dependent.
\square Divergent connection: The two end variables are dependent on each other. The middle variable renders them independent.

Determining independence

\square (This algorithm is called D-separation)
\square Query: Are two variables X_{i} and X_{i} independent?
Check all paths between X_{i} and X_{i}
\square If all paths are blocked, then independent
-If any path is not blocked then not independent

List the independencies in the following Bayesian Network

Inference in Bayesian Networks

\square Probabilistic inference refers to the task of computing some desired probability given other known probabilities (evidence)
\square Exact Inference

- Enumeration
- Variable elimination
\square Approximate Inference
- Direct sampling
- Rejection sampling
- Likelihood weighting
- MCMC

Recall: Burglary network

Inference by Enumeration

Step-One:-select the entries
in the table consistent with
the evidence (this becomes
our world)

Step Two: sum over the H
Step Three: Normalize variables to get the joint distribution of the query and evidence variables

$$
\begin{aligned}
p(b \mid j, m) & \propto \sum_{e} \sum_{a} p(b, j, m, e, a) \\
& =\sum_{e} \sum_{a} p(b) \cdot p(e) \cdot p(j \mid a) \cdot p(m \mid a) \cdot p(a \mid b, e) \quad \begin{array}{c}
\text { Conditional and joint differ only by } \\
\text { the normalizing constant }
\end{array} \\
& =p(b) \sum_{e} p(e) \sum_{a} p(j \mid a) \cdot p(m \mid a) \cdot p(a \mid b, e) \quad \text { Independencies read from } \mathrm{BN}
\end{aligned}
$$

\square Compute $\mathrm{p}(\mathrm{b} \mid i, \mathrm{~m})$ and $\mathrm{p}(-\mathrm{b} \mid \mathrm{i}, \mathrm{m})$ and then normalize
\square May compute the same expression more than once

Inference by Enumeration

Inference by Variable Elimination

Carry out sums from right to left storing intermediate results to avoid recomputation

$$
\begin{aligned}
p(B \mid j, m) & =\alpha p(B) \sum_{e} p(e) \sum_{a} p(a \mid B, e) p(j \mid a) p(m \mid a) \\
& =\alpha f_{1}(B) \sum_{e} f_{2}(e) \sum_{a} f_{3}(A, B, E) f_{4}(A) f_{5}(A) \\
& =\alpha f_{1}(B) \sum_{e} f_{2}(e) f_{6}(B, E) \\
& =\alpha f_{1}(B) f_{7}(B)
\end{aligned}
$$

Results are stored in factors (matrices)
Two operations: pointwise multiplication and summation

Inference by Variable Elimination

Point-wise multiplication of two factors

A	B	$\mathrm{f}_{1}(\mathrm{~A}, \mathrm{~B})$	B	C	$\mathrm{f}_{2}(\mathrm{~B}, \mathrm{C})$	A	B	C	$\mathrm{f}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})$
T	T	.3	T	T	.2	T	T	T	
T	F	.7	T	F	.8	T	T	F	
F	T	.9	F	T	.6	T	F	T	
F	F	.1	F	F	.4	T	F	F	
						F	T	T	
						F	T	F	
						F	F	T	
						F	F	F	

Summing out a variable corresponds to adding submatrices

Inference by Variable Elimination

Every variable that is not an ancestor of a query variable or evidence variable is irrelevant

Ordering of variables for summing out affects the time and space of VE
\square For polytrees (at most one path between any two nodes), VE is linear in the size of the network \square In general, time and space are exponential

2 Types of Approximate Inference

\square Analogous to uninformed/informed search algorithms that use an incremental formulation
\square Direct sampling
\square Rejection sampling
\square Likelihood weighting

Analogous to local search algorithms that use a complete-state formulation and make local modifications
\square Gibbs sampling (special case of MCMC methods)

Incremental formulation

\square Uses stochastic simulation
\square Basic Idea:

- Draw N samples from a sampling distribution S
- Compute the approximate posterior (conditional) probability P
- (Show this converges to the true probability P)
[$\mathrm{T}, \mathrm{T}, \mathrm{F}, \mathrm{T}$]
[F, F, F F F]
$[F, T, F, T]$
$[F, F, T, T]$
[T, F, F, F]
[T, T, F, T]
[F, T, F, T]
[T, F, F, F]
[F, T, T, F]
$[T, T, F, F]$
N samples generated using stochastic simulation

$$
p\left(X_{1}=T\right) \approx 5 / 10
$$

$$
p\left(X_{2}=F \mid X_{3}=F\right) \approx 3 / 10
$$

Approximations become exact as N approaches infinity

Direct Sampling: no evidence

S	R	$\mathrm{P}(\mathrm{w} \mid \mathrm{S}, \mathrm{R})$
T	T	.99
T	F	.90
F	T	.90
F	F	.01

Direct Sampling: no evidence

S	R	$\mathrm{P}(\mathrm{w} \mid \mathrm{S}, \mathrm{R})$
T	T	.99
T	F	.90
F	T	.90
F	F	.01

Direct Sampling: no evidence

Direct Sampling: no evidence

S	R	$\mathrm{P}(\mathrm{w} \mid \mathrm{S}, \mathrm{R})$
T	T	.99
T	F	.90
F	T	.90
F	F	.01

Direct Sampling: no evidence

Direct Sampling: no evidence

S	R	$\mathrm{P}(\mathrm{w} \mid \mathrm{S}, \mathrm{R})$
T	T	.99
T	F	.90
F	T	.90
F	F	.01

Direct Sampling: no evidence

Rejection Sampling: evidence

Perform direct sampling"Reject", i.e. remove, any samples that are inconsistent with the evidence[C, S, R, W]
$[T, T, F, T]$
$[F, F, F, F]$
[F, T, F, T]
[F, F, T, T]
$[T, F, F, F]$
[T, T, F, T]
[F, T, F, T]
$[T, F, F, F]$
[F, T, T, F]
[T, T, F, F]
$[T, T, F, T]$
$[F, F, F, F]$
$[F, T, F, T]$
$[F, F, T, T]$
$[T, F, F, F]$
$[T, T, F, T]$
$[F, T, F, T]$
$[T, F, F, F]$
$[F, T, T, F]$
$[T, T, F, F]$

$$
\begin{aligned}
& p(R \mid S=\text { true }) \\
& p(R=\text { true } \mid S=\text { true }) \approx 1 / 6 \\
& p(R=\text { false } \mid S=\text { true }) \approx 5 / 6
\end{aligned}
$$

Likelihood weighting

Fixes the values for the evidence so there are no wasted samples
Sample only the non-evidence variables
Not every sample is created equal
\square Need to weight each sample by how likely the evidence is given the sampled values
\square Compute the product of the conditional distribution of the evidence given the sampled values of its parents

$$
\text { weight }=p\left(e_{1} \mid \operatorname{Parents}\left(e_{1}\right)\right) * p\left(e_{2} \mid \operatorname{Parents}\left(e_{2}\right)\right) \ldots
$$

Likelihood weighting

Likelihood weighting

Likelihood weighting

Likelihood weighting

Likelihood weighting

Sample $[C, S, R, W]$	Weight
$[T, T, F, T]$	$p(s \mid c)=.10$
$[F, T, F, T]$	$p(s \mid-c)=.50$
$[T, T, F, T]$	$p(s \mid c)=.10$
$[F, T, T, F]$	$p(s \mid-c)=.50$
$[T, T, T, T]$	$p(s \mid c)=.10$
$[F, T, F, T]$	$p(s \mid-c)=.50$

Estimate probability of query using a weighted average

Gibbs Sampling

Analogous to a local search algorithm where we make local modifications to our current state
\square Initial state $=$ random assignment of non-evidence variables
\square States $=$ complete assignment of values to variables
\square Transition $=$ sample a new value for each variable in turn

Draw state space for WetGrass example on board

Gibbs Sampling

Analogous to a local search algorithm where we make local modifications to our current state \square Initial state $=$ random assignment of non-evidence variables
\square States $=$ complete assignment of values to variables
\square Transition $=$ sample a new value for each variable in turn
Each step to a new state is recorded as a sample In the limit, the probability of being in a state is proportional to that state's posterior probability

Gibbs Sampling

\square Gibbs sampling is an instance of a more general class of algorithms known as Markov Chain Monte Carlo (MCMC) algorithms
\square Note the use of the phrase "Markov chain" which we saw an example of earlier

Other methods you might hear mentioned
\square Metropolis-Hastings (a generalization of Gibbs sampling)
\square Variational method
Belief propagation

