INFERENCE IN BAYESIAN NETWORKS

Today

- □ Reading
 - □ AIMA 14.4 14.5
- □ Goals
 - □ Reading independencies
 - Exact inference
 - Approximate inference
 - □ Case Study: Latent Dirichlet Allocation

Three Types of Connections

Connection patterns and independence

- □ **Linear connection**: The two end variables are dependent on each other. The middle variable renders them independent.
- Converging connection: The two end variables are independent of each other. The middle variable renders them dependent.
- □ **Divergent connection**: The two end variables are dependent on each other. The middle variable renders them independent.

Determining independence

- □ (This algorithm is called D-separation)
- \qed Query: Are two variables X_i and X_j independent?
- \Box Check all paths between X_i and X_i
 - □ If all paths are blocked, then independent
 - □ If any path is not blocked then not independent

List the independencies in the following Bayesian Network

Inference in Bayesian Networks

- □ Probabilistic inference refers to the task of computing some desired probability given other known probabilities (evidence)
- Exact Inference
 - Enumeration
 - Variable elimination
- Approximate Inference
 - Direct sampling
 - Rejection sampling
 - Likelihood weighting
 - MCMC

Recall: Burglary network P(B)P(E)Burglary Earthquake .001 .002 P(A).95 Alarm .94 .29 P(J)P(M)JohnCalls 1 4 1 MaryCalls .05

Inference by Enumeration

Step One: select the entries in the table consistent with the evidence (this becomes our world)

Step Two: sum over the H variables to get the joint distribution of the query and evidence variables

Step Three: Normalize

- \Box Compute p(b|j,m) and p(-b|j,m) and then normalize
- □ May compute the same expression more than once

Inference by Enumeration

Inference by Variable Elimination

□ Carry out sums from right to left storing intermediate results to avoid recomputation

$$p(B|j,m) = \alpha \ p(B) \sum_{e} p(e) \sum_{a} p(a|B,e) \ p(j|a) \ p(m|a)$$

$$= \alpha \ f_1(B) \sum_{e} f_2(e) \sum_{a} f_3(A,B,E) \ f_4(A) \ f_5(A)$$

$$= \alpha \ f_1(B) \sum_{e} f_2(e) \ f_6(B,E)$$

$$= \alpha \ f_1(B) \ f_7(B)$$

- Results are stored in factors (matrices)
- Two operations: pointwise multiplication and summation

Inference by Variable Elimination

□ Point-wise multiplication of two factors

Α	В	f ₁ (A,B)	В	С	f ₂ (B,C)	Α	В	C	f ₃ (A,B,C)
Т	Т	.3	Т	Т	.2	Т	Т	Т	
Т	F	.7	Т	F	.8	Т	Т	F	
F	Т	.9	F	Т	.6	Т	F	Т	
F	F	.1	F	F	.4	Т	F	F	
						F	Т	Т	
						F	Т	F	
						F	F	Т	
						F	F	F	

 Summing out a variable corresponds to adding submatrices

Inference by Variable Elimination

- Every variable that is not an ancestor of a query variable or evidence variable is irrelevant
- Ordering of variables for summing out affects the time and space of VE
 - □ For polytrees (at most one path between any two nodes), VE is linear in the size of the network
 - In general, time and space are exponential

2 Types of Approximate Inference

- Analogous to uninformed/informed search algorithms that use an incremental formulation
 - Direct sampling
 - Rejection sampling
 - Likelihood weighting
- Analogous to local search algorithms that use a complete-state formulation and make local modifications
 - □ Gibbs sampling (special case of MCMC methods)

Incremental formulation

- Uses stochastic simulation
- Basic Idea:
 - Draw N samples from a sampling distribution S
 - Compute the approximate posterior (conditional) probability P
 - □ (Show this converges to the true probability P)

N samples generated using stochastic simulation

$$p(X_1 = T) \approx 5/10$$

$$p(X_2 = F \mid X_3 = F) \approx 3/10$$

Approximations become exact as N approaches infinity

Direct Sampling: no evidence

Rejection Sampling: evidence

- □ Perform direct sampling
- □ "Reject", i.e. remove, any samples that are inconsistent with the evidence


```
Cloudy)
Rain
Wet
Grass
```

```
p(R \mid S = true)

p(R = true \mid S = true) \approx 1/6

p(R = false \mid S = true) \approx 5/6
```

Likelihood weighting

- □ Fixes the values for the evidence so there are no wasted samples
- □ Sample only the non-evidence variables
- □ Not every sample is created equal
 - Need to weight each sample by how likely the evidence is given the sampled values
 - Compute the product of the conditional distribution of the evidence given the sampled values of its parents

```
weight = p(e_1 | Parents(e_1)) * p(e_2 | Parents(e_2)) ...
```


Likelihood weighting

Sample [C,S,R,W]	Weight
[T, T, F, T]	p(s c) = .10
[F, T, F, T]	$p(s \mid -c) = .50$
[T, T, F, T]	p(s c) = .10
[F, T, T, F]	$p(s \mid -c) = .50$
[T, T, T, T]	p(s c) = .10
[F, T, F, T]	$p(s \mid -c) = .50$

Estimate probability of query using a weighted average

Gibbs Sampling

- Analogous to a local search algorithm where we make local modifications to our current state
 - □ Initial state = random assignment of non-evidence variables
 - □ States = complete assignment of values to variables
 - □ Transition = sample a new value for each variable in turn

Draw state space for WetGrass example on board

Gibbs Sampling

- Analogous to a local search algorithm where we make local modifications to our current state
 - □ Initial state = random assignment of non-evidence variables
 - □ States = complete assignment of values to variables
 - □ Transition = sample a new value for each variable in turn
- □ Each step to a new state is recorded as a sample
- In the limit, the probability of being in a state is proportional to that state's posterior probability

Gibbs Sampling

- Gibbs sampling is an instance of a more general class of algorithms known as Markov Chain Monte Carlo (MCMC) algorithms
 - Note the use of the phrase "Markov chain" which we saw an example of earlier
- Other methods you might hear mentioned
 - Metropolis-Hastings (a generalization of Gibbs sampling)
 - Variational method
 - Belief propagation