PROBABILISTIC
REASONING OVER TIME

Quiz information

1 The first midterm quiz is on Tuesday (10/15)

0 In-class (75 minutes)

Not covered:
-1 Coverage Chapter 2
Newton-Rhapson
2 AIMA Ch. 3-6 Variable elimination

Gibbs sampling

o AIMA Ch.13-14
71 Allowed one two-sided (8.5x11) cheat sheet

-1 Optional problems for practice

1 The solutions for optional problems on HW4 already
posted on Piazza
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Today

Reading
AIMA Chapter 15.1-15.2, 15.5

Goals

Types of inference
Filtering, prediction, smoothing, most likely explanation

Particle filters

Hidden Markov Model

Hidden Markov Models involve three things:
Transition model: P(X,| X, ;)
Emission (evidence) model: P(E,| X))
Prior probability: P(X)
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Inference Tasks

Filtering: P(X,| e;,)

Decision making in the here and now
Prediction: P(X,,, | e;,)

Trying to plan the future
Smoothing: P(X, | e, ) for 0 < k <t

Gives a better (smoother) estimate than filtering by
taking into account future evidence

Most Likely Explanation (MLE): argmax P(x, | e, )

Xyt

e.g., speech recognition, sketch recognition

Filtering: P(X,| e, )

A recursive state estimation algorithm
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Filtering: P(X,| e )

Assume we already have p(X, ;|e;. ;)

Filtering: P(X,| e )

Update from state X, ; to X,




Filtering: P(X,| e, )

1 Then incorporate the new evidence E,

The Forward Algorithm

P(Xt|61:t) = p(Xt|61:t—1a €t)
p(et\Xt, el:t—l) p(Xt|€1:t—1)
= p(€t|Xt) p(Xt‘elzt—l)

L J \ J
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®

Incorporate Update state
evidence
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The Forward Algorithm

P(Xt|61:t) = p(Xt|61:t—1a €t)
p(et\Xt, el:t—l) p(Xt|€1:t—1)
= p(€t|Xt) p(Xt‘elzt—l)

®

= plee] Xi) Z (X, Xi—1ler:i—1)

Xi-1

= plet] Xt) Z p(Xe|Xi—1,e1:0-1) P(Xi-1]er:i—1)
X1

= pled| Xe) Z p(Xi Xi—1) p(Xi—1ler:i—1)
Xia ' J

Emission Transmission + recursion

Filtering Example

p(R,) = <0.5, 0.5> @ @ @

Rer | P(R | Rys)
T 0.7
BN OBNORC®
R, | p(Ul R)
T 0.9
F 0.2 p(Xeler) o< ple] Xy) Z P(X| Xi—1) p(Xi—1ler:i—1)

Xi—1
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Smoothing: p(X, e ) for 1 <k <t

p(Xkleit) = p(Xkleik, eryi:t)
(X €k+1: t|€1 k)
(
(

%

ek+1:t| Xk, e1:) P(Xk|e1:x)

ert+1:¢| Xx) p(Xkle1.k)
\—Y—/

Forward Algorithm

p
p
p

The Backward Algorithm

01 A recursive state estimation algorithm
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The Backward Algorithm

0 Assume we have p(X, ;e 0,

The Backward Algorithm

0 Incorporate evidence via p(e,,; | X,4;)




The Backward Algorithm
o

OSOTONG
O CEONC NGNS

01 Update the state via p(X, ;| X,)

Smoothing: p(X, e ) for 1 <k <t
.

(Xk|€1t) p( |€1k’6k+1t)

p(X ek—i—lt’elk)

plert1:t| X, er:x) p(Xileir)

= pler+1:¢|Xk) p(Xkle1x)
\—Y—}

<

Forward Algorithm

pletralXn) = D plentre Xer1|Xk)

Xi+1

= Z plert1:6| Xk+1) p(Xpet1]Xk)
Xr+1

= Z plert1]Xkt1) Plert2:4| Xit1) P(Xpr1|Xk)
Xp+1 \—Y—} k—Y—J

Emission Recursion Transmission
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Filtering and Smoothing

1 Filtering using the Forward algorithm

p(Xt|€1:t) X p(€t|Xt) z p(Xt‘Xt—l) p(Xt—1|€1:t—1)
Xt

-1 Smoothing uses the Forward and Backward
algorithms

p(Xkler.t) o< plexti:e|Xi) p(Xkler:)  where

p(6k+1:t’Xk) = Z p(€k+1|Xk+1) p(€k+2:t|Xk+1) P(Xk;ﬂ’Xk)
Xp+1

Smoothing Example

p(Ry) = <0.5, 0.5>

Rain, Rain, Raing
Reti | P(R | Ry)
T 0.7
0.3 @
Re | p(UdR)
T 0.9 P(r1 |U]) P(I’2|U], U2) P(I’1 |U1 :U2)
F 0.2 0.818 0.883 2
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Most Likely Explanation

Find the state sequence that makes the observed
evidence sequence most likely

argmax P(X, | e;,)
X]:t

Recursive formulation:

The most likely state sequence for X, is the most likely
state sequence for X, , followed by the transition to X,

Equivalent to Filtering algorithm except summation
replaced with max

Called the Viterbi Algorithm

Dynamic Bayesian Networks

Any BN that represents a temporal probability
distribution using state variables and evidence
variables is called a Dynamic Bayesian Network

A Hidden Markov Model is the simplest type of
DBN

State is represented by a single variable
Evidence is represented by a single variable
Applications

speech recognition

handwriting recognition

gesture recognition
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Approximate Inference in Dynamic BN

Recall approximate inference algorithms from
previous lecture
Direct sampling, rejection sampling, likelihood weighting

Gibbs sampling

Filtering in a DBN can be accomplished by applying
likelihood weighting (with some modifications) to the
DBN

This is known as a Particle filter

Particle Filtering

Likelihood weighting fixes the evidence variables
and samples only the non-evidence variables

Introduces a weight to correct for the fact that we're
sampling from the prior distribution instead of the
posterior distribution

weight = p(e, | Parents(e;)) * p(e,| Parents(e,)) ...
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Particle Filtering

O Initialize
Draw N particles (i.e. samples) for X, from the prior
distribution p(X,)
0 Propagate
Propagate each particle forward by sampling X,,; | X,
0 Weight
Weight each particle by p(e.,; | X4;)
0 Resample

Generate N new particles by sampling proportional to
the weights. The new particles are unweighted

Particle Filtering

= Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
o (0T | e | o °| o
o |e% \o\\ ® ol o o | o
® (] o 1 .® e e
e ® ® | %9 "o ° | o%
. ) e
Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=9 (3,2)
(3,2) (3,1) (31) w=4 (2,3)
(3,3) (3,3) (3,3) w=4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)
(3,3) (3,2) (3,2) w=9 (3,2)
(2,3) (2,2) (2,2) w=4 (3,2)
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Compute p(X,|U,) using particle filter

Step One: figure out how to sample from a discrete
distribution?

Given a random number between [0,1] you can sample
from any discrete distribution

Step Two: Particle filtering
Draw N=10 particles from prior distribution
Propagate each particle forward by sampling p(X, | x,)
Weight each particle by p(e.,; | X.44)

Generate N=10 new particles by sampling proportional
to the weights.
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