PROBABILISTIC REASONING OVER TIME

Quiz information

- \Box The first midterm quiz is on Tuesday (10/15)
- □ In-class (75 minutes)
- Coverage
 - □ AIMA Ch. 3-6
 - □ AIMA Ch.13-14
- □ Allowed one two-sided (8.5x11) cheat sheet
- □ Optional problems for practice
 - The solutions for optional problems on HW4 already posted on Piazza

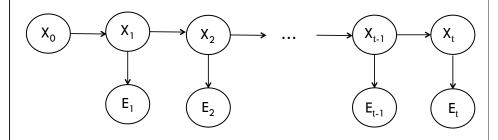
Not covered: Chapter 2 Newton-Rhapson Variable elimination Gibbs sampling

Today

- Reading
 - □ AlMA Chapter 15.1-15.2, 15.5
- □ Goals
 - □ Types of inference
 - Filtering, prediction, smoothing, most likely explanation
 - Particle filters

Hidden Markov Model

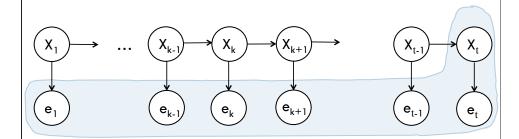
- □ Hidden Markov Models involve three things:
 - \blacksquare Transition model: $P(X_t | X_{t-1})$
 - \blacksquare Emission (evidence) model: $P(E_t | X_t)$
 - \square Prior probability: $P(X_0)$



Inference Tasks

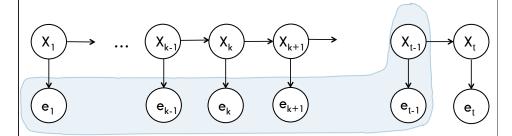
- □ Filtering: $P(X_t | e_{1:t})$
 - Decision making in the here and now
- □ Prediction: $P(X_{t+k} | e_{1:t})$
 - □ Trying to plan the future
- $\hfill\Box$ Smoothing: $P(X_k \,|\, e_{1:t})$ for $0 \leq k \leq t$
 - □ Gives a better (smoother) estimate than filtering by taking into account future evidence
- $\hfill \square$ Most Likely Explanation (MLE): $\underset{x_{1:t}}{\operatorname{argmax}} \ P(x_{1:t} \, | \, e_{1:t})$
 - □ e.g., speech recognition, sketch recognition

Filtering: $P(X_t | e_{1:t})$



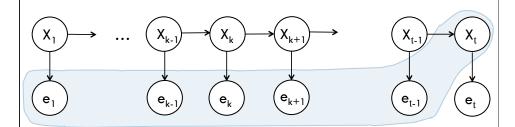
□ A recursive state estimation algorithm

Filtering: $P(X_t | e_{1:t})$



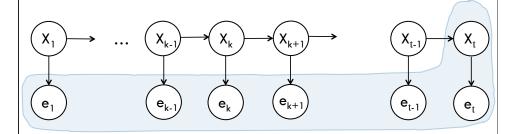
 $\hfill \square$ Assume we already have p(X_{t-1} | e_{1:t-1})

Filtering: $P(X_t | e_{1:t})$



 $\hfill\Box$ Update from state $X_{t\text{--}1}$ to X_t

Filtering: $P(X_t | e_{1:t})$



□ Then incorporate the new evidence E,

The Forward Algorithm

$$\begin{split} p(X_t|e_{1:t}) &= p(X_t|e_{1:t-1},e_t) \\ &\propto p(e_t|X_t,e_{1:t-1}) \; p(X_t|e_{1:t-1}) \\ &= p(e_t|X_t) \; p(X_t|e_{1:t-1}) \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\$$

The Forward Algorithm

$$p(X_{t}|e_{1:t}) = p(X_{t}|e_{1:t-1}, e_{t})$$

$$\propto p(e_{t}|X_{t}, e_{1:t-1}) p(X_{t}|e_{1:t-1})$$

$$= p(e_{t}|X_{t}) p(X_{t}|e_{1:t-1})$$

$$= p(e_{t}|X_{t}) \sum_{X_{t-1}} p(X_{t}, X_{t-1}|e_{1:t-1})$$

$$= p(e_{t}|X_{t}) \sum_{X_{t-1}} p(X_{t}|X_{t-1}, e_{1:t-1}) p(X_{t-1}|e_{1:t-1})$$

$$= p(e_{t}|X_{t}) \sum_{X_{t-1}} p(X_{t}|X_{t-1}) p(X_{t-1}|e_{1:t-1})$$

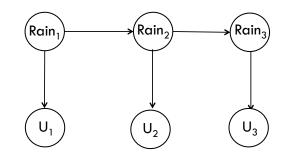
Emission Transmission + recursion

Filtering Example

 $p(R_0) = <0.5, 0.5>$

R_{t-1}	$p(R_t \mid R_{t-1})$	
Т	0.7	
F	0.3	

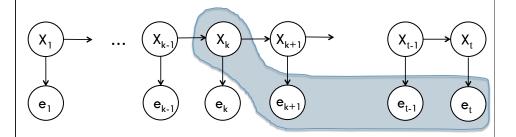
R _t	$p(U_t R_t)$	
Т	0.9	
F	0.2	



$$p(X_t|e_{1:t}) \propto p(e_t|X_t) \sum_{X_{t-1}} p(X_t|X_{t-1}) \ p(X_{t-1}|e_{1:t-1})$$

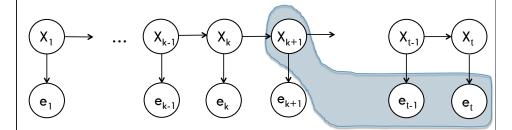
Smoothing: $p(X_k | e_{1:t})$ for $1 \le k \le t$

The Backward Algorithm



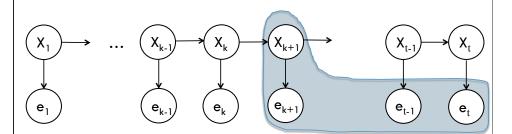
 $\hfill\Box$ A recursive state estimation algorithm

The Backward Algorithm



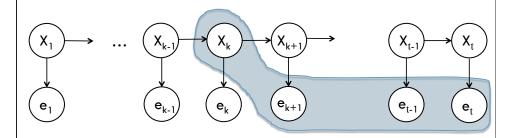
 $\hfill\Box$ Assume we have p(X $_{k+1} \mid e_{k+2:t})$

The Backward Algorithm



 \Box Incorporate evidence via $p(e_{k+1} | X_{k+1})$

The Backward Algorithm



 \Box Update the state via $p(X_{k+1} | X_k)$

Smoothing: $p(X_k | e_{1:t})$ for $1 \le k < t$

$$p(X_k|e_{1:t}) = p(X_k|e_{1:k},e_{k+1:t})$$

$$\propto p(X_k,e_{k+1:t}|e_{1:k})$$

$$= p(e_{k+1:t}|X_k,e_{1:k}) \ p(X_k|e_{1:k})$$

$$= p(e_{k+1:t}|X_k) \ p(X_k|e_{1:k})$$
 Forward Algorithm

$$\begin{split} p(e_{k+1:t}|X_k) &= \sum_{X_k+1} p(e_{k+1:t}, X_{k+1}|X_k) \\ &= \sum_{X_k+1} p(e_{k+1:t}|X_{k+1}) \; p(X_{k+1}|X_k) \\ &= \sum_{X_k+1} p(e_{k+1}|X_{k+1}) \; p(e_{k+2:t}|X_{k+1}) \; p(X_{k+1}|X_k) \\ &= \sum_{X_k+1} p(e_{k+1}|X_{k+1}) \; p(e_{k+2:t}|X_{k+1}) \; p(X_{k+1}|X_k) \end{split}$$
 Emission Recursion Transmission

Filtering and Smoothing

□ Filtering using the Forward algorithm

$$p(X_t|e_{1:t}) \propto p(e_t|X_t) \sum_{X_{t-1}} p(X_t|X_{t-1}) p(X_{t-1}|e_{1:t-1})$$

Smoothing uses the Forward and Backward algorithms

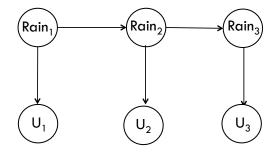
$$p(X_k|e_{1:t}) \propto p(e_{k+1:t}|X_k) \ p(X_k|e_{1:k})$$
 where
 $p(e_{k+1:t}|X_k) = \sum_{X_k+1} p(e_{k+1}|X_{k+1}) \ p(e_{k+2:t}|X_{k+1}) \ p(X_{k+1}|X_k)$

Smoothing Example

 $p(R_0) = <0.5, 0.5>$

R _{t-1}	$p(R_t \mid R_{t-1})$	
Т	0.7	
F	0.3	

\mathbf{R}_{t}	$p(U_t R_t)$	
T	0.9	
F	0.2	



P(r ₁ u ₁)	$P(r_2 \upsilon_1, \upsilon_2)$	P(r ₁ U ₁ , U ₂)
0.818	0.883	Ś

Most Likely Explanation

 Find the state sequence that makes the observed evidence sequence most likely

$$\underset{X_{1:t}}{\operatorname{argmax}} P(X_{1:t} | e_{1:t})$$

- □ Recursive formulation:
 - The most likely state sequence for $X_{1:t}$ is the most likely state sequence for $X_{1:t-1}$ followed by the transition to X_t
 - Equivalent to Filtering algorithm except summation replaced with max
 - Called the Viterbi Algorithm

Dynamic Bayesian Networks

- Any BN that represents a temporal probability distribution using state variables and evidence variables is called a Dynamic Bayesian Network
- A Hidden Markov Model is the simplest type of DBN
 - State is represented by a single variable
 - Evidence is represented by a single variable
 - Applications
 - speech recognition
 - handwriting recognition
 - gesture recognition

Approximate Inference in Dynamic BN

- Recall approximate inference algorithms from previous lecture
 - Direct sampling, rejection sampling, likelihood weighting
 - Gibbs sampling
- □ Filtering in a DBN can be accomplished by applying likelihood weighting (with some modifications) to the DBN
- □ This is known as a Particle filter

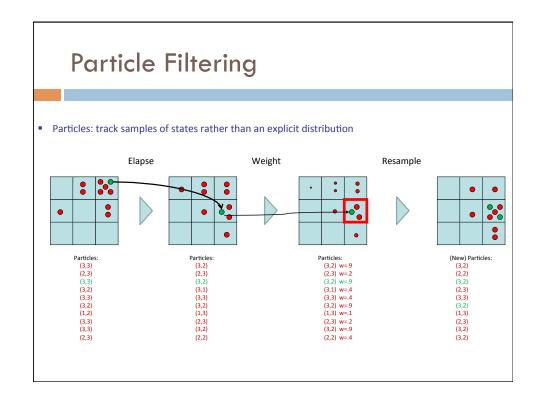
Particle Filtering

- ☐ Likelihood weighting fixes the evidence variables and samples only the non-evidence variables
- Introduces a weight to correct for the fact that we're sampling from the prior distribution instead of the posterior distribution

weight = $p(e_1 | Parents(e_1)) * p(e_2 | Parents(e_2)) ...$

Particle Filtering

- □ Initialize
 - □ Draw N particles (i.e. samples) for X_0 from the prior distribution $p(X_0)$
- □ Propagate
 - $lue{}$ Propagate each particle forward by sampling $X_{t+1} \mid X_t$
- □ Weight
 - \blacksquare Weight each particle by $p(e_{t+1} | X_{t+1})$
- □ Resample
 - □ Generate N new particles by sampling proportional to the weights. The new particles are unweighted



Compute $p(X_2 | U_2)$ using particle filter

- □ Step One: figure out how to sample from a discrete distribution?
 - □ Given a random number between [0,1] you can sample from any discrete distribution
- □ Step Two: Particle filtering
 - □ Draw N=10 particles from prior distribution
 - \blacksquare Propagate each particle forward by sampling $p(X_{t+1} | x_t)$
 - $lue{}$ Weight each particle by $p(e_{t+1} | x_{t+1})$
 - Generate N=10 new particles by sampling proportional to the weights.