ENSEMBLE METHODS

Today

\square Reading
\square AIMA 18.10-18.11
\square Goals
\square (Recap support vector machines)
\square Ensembles of classifiers

What defines a hyperplane?

A hyperplane is defined by:A vector w\square Perpendicular to the hyperplane

- Often called the "weight" vector
\square A scalar b
\square Selects the hyperplane that is distance b from the origin from among all possible hyperplanes

Deriving a support vector machine

	- x^{i} is the $i^{\text {th }}$ training example r_{0} is any point on the decision boundary w is the weight vector which is perpendicular to the decision boundary The geometric margin of x_{i} is given by γ^{i} The geometric margin is equal to the length of the projection of ($x^{i}-r_{0}$) onto the vector w The length of the projection of ($x^{i}-r_{0}$) onto the vector w is given by: $\begin{aligned} \gamma^{(i)} & =\frac{\left(x^{(i)}-r_{0}\right) \cdot w}{\\|w\\|} \\ & =\frac{w \cdot x^{(i)}-r_{0} \cdot w}{\\|w\\|} \\ & =\frac{w \cdot x^{(i)}+b}{\\|w\\|} \end{aligned}$ where $b=-r_{0} \cdot w$

Recap: Solving the Optimization Problem

$\min _{w, b} \frac{1}{2}\|w\|^{2}$ such that $y^{(i)}\left(w^{\top} x^{(i)}+b\right) \geq 1 \quad \forall i$

- Need to optimize a quadratic function subject to linear constraints
- Quadratic optimization problems are a well-known class of mathematical programming problem and many algorithms exist for solving them
- The solution involves constructing a dual problem where a Lagrange multiplier (a scalar value) is associated with every constraint in the primary problem

Solving the Optimization Problem

$\min _{w, b} \frac{1}{2}\|w\|^{2}$ such that $y^{(i)}\left(w^{\top} x^{(i)}+b\right) \geq 1 \quad \forall i$
$\left.\max _{\substack{\text { Lagrange } \\ \text { multipliers }}}^{\min _{w, b}} \frac{1}{2}\|w\|^{2}-\sum_{i=1}^{\downarrow_{N}} \alpha_{i}\left[y^{(i)}\left(w^{\top} x^{(i)}+b\right)-1\right] \quad{ }_{\downarrow}\right]$ Dual

$$
\max _{\alpha} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} x^{(i)} x^{(j)}
$$

$$
\text { subject to } \alpha_{i} \geq 0 \text { and } \sum_{i} \alpha_{i} y^{(i)}=0
$$

Solving the Optimization Problem

\square The solution has the form:

$$
w=\sum_{i=1}^{N} \alpha_{i} y^{(i)} x^{(i)} \text { and } b=y^{(i)}-w^{\boldsymbol{\top}} x^{(i)} \text { for any } x^{(i)} \text { s.t. } \alpha_{i} \neq 0
$$

\square Each non-zero alpha indicates corresponding x_{i} is a support vector
\square The classifying function has the form: $g\left(x_{i}\right)=\operatorname{sign}\left(\sum_{i} \alpha_{i} y^{(i)} x^{(i)} x+b\right)$

Relies on an inner product between the test point x and the support vectors X_{i}

Non-linear SVMs

\square General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel" trick

The linear classifier relies on an inner product between vectors $x_{i}{ }^{\top} x_{i}$

$$
g\left(x_{i}\right)=\operatorname{sign}\left(\sum_{i} \alpha_{i} y^{(i)} x^{(i)} x+b\right)
$$

If every example is mapped into a high-dimensional space via some transformation $\Phi: \mathbf{x} \rightarrow \varphi(\mathbf{x})$ then the inner product becomes:

$$
g\left(x_{i}\right)=\operatorname{sign}\left(\sum_{i} \alpha_{i} y^{(i)} \varphi\left(x^{(i)}\right)^{\top} \varphi(x)+b\right)
$$

\square A kernel function is some function that corresponds to a dot product in some transformed feature space:

$$
K\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right)=\varphi\left(\mathbf{x}_{\mathbf{i}}\right)^{\top} \varphi\left(\mathbf{x}_{\mathrm{j}}\right)
$$

The "Kernel" trick

The kernel K may be cheaper to compute then the transformation φ

- Implictly do the transformation

$$
\phi(x)=\left[\begin{array}{l}
x_{1} x_{1} \\
x_{1} x_{2} \\
x_{1} x_{3} \\
x_{2} x_{1} \\
x_{2} x_{2} \\
x_{2} x_{3} \\
x_{3} x_{1} \\
x_{3} x_{2} \\
x_{3} x_{3}
\end{array}\right] \quad K(x, z)=\left(\sum_{i=1}^{n} x_{i} z_{i}\right)\left(\sum_{j=1}^{n} x_{i} z_{i}\right)
$$

Kernels

Why use kernels?
-Make non-separable problem separable.
-Map data into better representational space

Common kernels
-Linear

- Polynomial $K(x, z)=\left(1+\mathbf{x}^{\top} \mathbf{z}\right)^{\text {d }}$

■Radial basis function (infinite dimensional space)

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=e^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 \sigma^{2}}
$$

SVMs Summary

The classifier is a decision boundary (separating hyperplane)
Most "important" training points are support vectors which define the hyperplane
\square Quadratic optimization algorithms can identify which training points are support vectors (vectors with non-zero Lagrange multipliers)
\square In the dual formation and in classifying an example, the training points appear only inside inner products
Kernels allow us to efficiently map data to higher dimensional space

Which classifier should I use?

Is there a classifier that is optimal for all classification problems?

Factors to take into account:

\square How much training data is available?
\square How simple/complex is the problem? (linear vs.
nonlinear decision boundary)

- How noisy/skewed is the training data?
\square How stable is the problem over time?
\square Is it a singly-labeled or multi-labeled problem? Are the labels correlated?

How Much Data?

Learning theory (PAC learning)
\square Gives theoretical bounds on how much training data you need for a given accuracy (AIMA 18.5)

Very Little

- There are empirical results that naïve Bayes should do well in such circumstances (Ng and Jordan 2002 NIPS)
- The interesting theoretical answer is to explore semi-supervised training methods: Bootstrapping, EM over unlabeled documents, ...
- The practical answer is to get more labeled data as soon as you can
\square A reasonable amount of data
- Start with SVMs
\square A lot of data?
- expensive methods like SVMs (train time) or kNN (test time) are quite impractical
- Naïve Bayes! - with lots of data, simple methods work well

Ensembles of Classifiers

Ensemble - A group of items viewed as a whole rather than individually
\square An ensemble of classifiers - A group of classifiers whose predictions are combined to produce one final prediction

Benefits

- Harder to make a wrong prediction
\square More expressive hypothesis

Ensemble of decision trees

Combine the prediction of each decision tree using majority vote
Variation of this called a Random Forest

Ensemble of linear classifiers

\square More expressive than any one linear classifier by itself

Ensemble Schemes

\square Multi-expert combination methods
\square Global - All classifiers generate an output and all outputs are used in some way

- e.g. weighting, voting, averaging
- Local - A gating model chooses one (or very few) of the classifiers responsible for generating the output for a specific input
- e.g. mixture of experts
\square Multi-stage combination
\square Classifiers are trained with, or tested on, only the instances where the previous classifiers are not accurate enough
- e.g. cascading

Boosting

Boosting is one of the most common forms of

 constructing an ensemble of classifiers- Learn a series of weak classifiers, i.e. classifiers whose performance is slightly better than random chance
\square Weight each weak classifier to create a final strong classifier
\square Often the weight for each classifier is proportional to its accuracy
A well-known boosting algorithm is AdaBoost short for "Adaptive Boosting" (Freund and Schapire 1995)

AdaBoost

```
function ADABOOST(examples, L,K) returns a weighted-majority hypothesis
    inputs: examples, set of N labeled examples ( }\mp@subsup{x}{1}{},\mp@subsup{y}{1}{}),\ldots,(\mp@subsup{x}{N}{},\mp@subsup{y}{N}{}
        L, a learning algorithm
        K}\mathrm{ , the number of hypotheses in the ensemble
    local variables: w, a vector of N example weights, initially 1/N
            h, a vector of }K\mathrm{ hypotheses
            z, a vector of K}\mathrm{ hypothesis weights
    for }k=1\mathrm{ to }K\mathrm{ do
        h}[k]\leftarrowL(examples,\mathbf{w}
        error }\leftarrow
        for j=1 to }N\mathrm{ do
        if }\mathbf{h}[k](\mp@subsup{x}{j}{})\not=\mp@subsup{y}{j}{}\mathrm{ then error }\leftarrow\mathrm{ error }+\mathbf{w}[j
            for }j=1\mathrm{ to }N\mathrm{ do
                if h}[k](\mp@subsup{x}{j}{})=\mp@subsup{y}{j}{}\mathrm{ then }\mathbf{w}[j]\leftarrow\mathbf{w}[j]\cdot error/(1- error )
            w}\leftarrow\operatorname{NORMALIZE(w)
            z}[k]\leftarrow\operatorname{log}(1-\mathrm{ error )}/\mathrm{ error
    return WEIGHTED-MAJORITY(h,z)
```


AdaBoost

\square Generates a sequence of weak classifiers each focusing on the errors of the previous classifier
\square AdaBoost returns a strong classifier, i.e. a classifier that can perfectly classify the training data for large enough K

To classify a new example x:
$h(x)=\operatorname{sign}\left(\sum_{k=1}^{K} \mathbf{z}[k] h_{k}(x)\right) \quad$ where $\quad \mathbf{z}[k]=\log \left(\frac{1-\text { error }}{\text { error }}\right)$

Bagging

Short for "Bootstrap aggregating"

Given training set $D$$\square$ Generate M new training sets D_{i} where $\left|D_{i}\right|<|D|$ by sampling from D with replacement
\square This is a statistical technique known as bootstrapping
\square Train a classifier on each of the M new training sets
\square Combine output of M classifiers using averaging or voting

Random Forests (Breimen, 2001)
\square Bagged decision trees

Cascading classifiers

\square Order classifiers by complexity, e.g.
representational complexity
\square Use $i^{\text {th }}$ classifier d_{i} only if previous classifiers are not confident
\square Good with high precision/ low recall classifiers

Ensemble methods

Boosting\square Weighted training sets

- Ex: AdaboostBagging
- Resampled training sets
\square Ex: Random forests
Cascading
\square Ordered collection of classifiers

