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ENSEMBLE METHODS 

Today 

¨  Reading 
¤ AIMA 18.10-18.11 

¨  Goals 
¤  (Recap support vector machines) 
¤ Ensembles of classifiers 



11/6/13	  

2	  

¨  A vector w  
¤  Perpendicular to the 

hyperplane 
¤ Often called the “weight” 

vector 

¨  A scalar b 
¤  Selects the hyperplane 

that is distance b from the 
origin from among all 
possible hyperplanes 

w 

b 

What defines a hyperplane? 

A hyperplane is defined by: 

Deriving a support vector machine 

¨  xi is the ith training example 

¨  r0 is any point on the decision boundary 

¨  w is the weight vector which is perpendicular to the 
decision boundary 

¨  The geometric margin of xi is given by γi 

¨  The geometric margin is equal to the length of the 
projection of (xi-r0) onto the vector w 

¨  The length of the projection of (xi-r0) onto the vector w is 
given by: 

w =

NX

i=1

↵
i

y(i)x(i) and b = y(i) � w|x(i) for any x(i) s.t. ↵
i

6= 0

�(i) =
(x(i) � r0) · w

||w||

=
w · x(i) � r0 · w

||w||

=
w · x(i) + b

||w||
where b = �r0 · w

9

r0 

xi 

xi-r0 

γi 

w 
w 
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Deriving a support vector machine 

¨  Define γ to be minimum of the geometric margins γ(i) 

¨  Then the optimization task becomes: 

 

¨  Define                   . Then we can rewrite the optimization 
problem as: 

 
 

¨  Since the optimization is invariant to the scaling of w, we 
scale w so that       equals 1 

¨  The maximum of 1/z is equivalent to the minimum of z2 

which is equivalent to the minimum of 0.5 z2 

r0 

xi 

xi-r0 

γi 

w 
w 

p(Y |x1, x2, . . . , xn

)

/ p(Y, x1, x2, . . . , xn

)

= p(x1|x2, . . . , xn

, Y ) . . . p(x
n

|Y )p(Y )

= p(x1|Y )p(x2|Y ) . . . p(x
n

|Y )p(Y )

= p(Y )
nY

i=1

p(x
i

|Y )

Accuracy =
7 + 8

7 + 8 + 2 + 3
=

15

20
= .75

Precision =
7

7 + 3
= .70

Recall =
7

7 + 2
= .78

F1-score = 2

✓
.70 · .78
.70 + .78

◆
= 2

✓
.546

1.48

◆
= .74

D = {(x
i

,y
i

)|i = 1 . . . N}

y
i

2 {�1, 1}

g(x
i

) = sign

✓X

i

↵
i

y(i)'(x(i))|'(x) + b

◆

w|x+ b = 0 x on the decision boundary
w|x+ b < 0 x “below” the decision boundary
w|x+ b > 0 x “above” the decision boundary

min
w,b

1

2
||w||2 such that y(i)

�
w|x(i) + b

� � 1 8i

max
�,w,b

� such that y(i)
�
w|x(i) + b

�

||w|| � � 8i

�̂ = �||w||

max
�̂,w,b

�̂ such that y(i)
�
w|x(i) + b

� � �̂ 8i

8

p(Y |x1, x2, . . . , xn

)

/ p(Y, x1, x2, . . . , xn

)

= p(x1|x2, . . . , xn

, Y ) . . . p(x
n

|Y )p(Y )

= p(x1|Y )p(x2|Y ) . . . p(x
n

|Y )p(Y )

= p(Y )
nY

i=1

p(x
i

|Y )

Accuracy =
7 + 8

7 + 8 + 2 + 3
=

15

20
= .75

Precision =
7

7 + 3
= .70

Recall =
7

7 + 2
= .78

F1-score = 2

✓
.70 · .78
.70 + .78

◆
= 2

✓
.546

1.48

◆
= .74

D = {(x
i

,y
i

)|i = 1 . . . N}

y
i

2 {�1, 1}

g(x
i

) = sign

✓X

i

↵
i

y(i)'(x(i))|'(x) + b

◆

w|x+ b = 0 x on the decision boundary
w|x+ b < 0 x “below” the decision boundary
w|x+ b > 0 x “above” the decision boundary

min
w,b

1

2
||w||2 such that y(i)

�
w|x(i) + b

� � 1 8i

max
�,w,b

� such that y(i)
�
w|x(i) + b

�

||w|| � � 8i

�̂ = �||w||

max
�̂,w,b

�̂ such that y(i)
�
w|x(i) + b

� � �̂ 8i

8

max
�,w,b

� such that y(i)
�
w|x(i) + b

�

||w|| � � 8i

�̂ = �||w||

max
�̂,w,b

�̂

||w|| such that y(i)
�
w|x(i) + b

� � �̂ 8i

max
w,b

1

||w|| such that y(i)
�
w|x(i) + b

� � 1 8i

max
↵

min
w,b

1

2
||w||2 �

NX

i=1

↵
i

⇥
y(i)(w|x(i) + b

�� 1
⇤

max
↵

NX

i=1

↵
i

� 1

2

X

i

X

j

↵
i

↵
j

y(i)y(j)x(i)x(j)

subject to ↵
i

� 0 and
X

i

↵
i

y(i) = 0

w =
NX

i=1

↵
i

y(i)x(i) and b = y(i) � w|x(i) for any x(i) s.t. ↵
i

6= 0

�(i) =
(x(i) � r0) · w

||w||

=
w · x(i) � r0 · w

||w||

=
w · x(i) + b

||w||
where b = �r0 · w

9

max
�,w,b

� such that y(i)
�
w|x(i) + b

�

||w|| � � 8i

�̂ = �||w||

max
�̂,w,b

�̂

||w|| such that y(i)
�
w|x(i) + b

� � �̂ 8i

max
w,b

1

||w|| such that y(i)
�
w|x(i) + b

� � 1 8i

max
↵

min
w,b

1

2
||w||2 �

NX

i=1

↵
i

⇥
y(i)(w|x(i) + b

�� 1
⇤

max
↵

NX

i=1

↵
i

� 1

2

X

i

X

j

↵
i

↵
j

y(i)y(j)x(i)x(j)

subject to ↵
i

� 0 and
X

i

↵
i

y(i) = 0

w =

NX

i=1

↵
i

y(i)x(i) and b = y(i) � w|x(i) for any x(i) s.t. ↵
i

6= 0

�(i) =
(x(i) � r0) · w

||w||

=
w · x(i) � r0 · w

||w||

=
w · x(i) + b

||w||
where b = �r0 · w

9

p(Y |x1, x2, . . . , xn

)

/ p(Y, x1, x2, . . . , xn

)

= p(x1|x2, . . . , xn

, Y ) . . . p(x
n

|Y )p(Y )

= p(x1|Y )p(x2|Y ) . . . p(x
n

|Y )p(Y )

= p(Y )
nY

i=1

p(x
i

|Y )

Accuracy =
7 + 8

7 + 8 + 2 + 3
=

15

20
= .75

Precision =
7

7 + 3
= .70

Recall =
7

7 + 2
= .78

F1-score = 2

✓
.70 · .78
.70 + .78

◆
= 2

✓
.546

1.48

◆
= .74

D = {(x
i

,y
i

)|i = 1 . . . N}

y
i

2 {�1, 1}

g(x
i

) = sign(w|x+ b)

w|x+ b = 0 x on the decision boundary
w|x+ b < 0 x “below” the decision boundary
w|x+ b > 0 x “above” the decision boundary

min
w,b

1

2
||w||2 such that y(i)

�
w|x(i) + b

� � 1 8i

max
↵

min
w,b

1

2
||w||2 �

NX

i=1

↵
i

⇥
y(i)(w|x(i) + b

�� 1
⇤

8

Recap: Solving the Optimization Problem 

¨  Need to optimize a quadratic function subject to linear 
constraints 

 

¨  Quadratic optimization problems are a well-known class of 
mathematical programming problem and many algorithms 
exist for solving them 

 

¨  The solution involves constructing a dual problem where a 
Lagrange multiplier (a scalar value) is associated with every 
constraint in the primary problem 
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Solving the Optimization Problem 
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Lagrange 
multipliers 

 Dual 

¨  The solution has the form: 

¨  Each non-zero alpha indicates corresponding xi is a support vector 

¨  The classifying function has the form: 
 

¨  Relies on an inner product between the test point x and the support 
vectors xi 

Solving the Optimization Problem 

p(Y |x1, x2, . . . , xn

)

/ p(Y, x1, x2, . . . , xn

)

= p(x1|x2, . . . , xn

, Y ) . . . p(x
n

|Y )p(Y )

= p(x1|Y )p(x2|Y ) . . . p(x
n

|Y )p(Y )

= p(Y )
nY

i=1

p(x
i

|Y )

Accuracy =
7 + 8

7 + 8 + 2 + 3
=

15

20
= .75

Precision =
7

7 + 3
= .70

Recall =
7

7 + 2
= .78

F1-score = 2

✓
.70 · .78
.70 + .78

◆
= 2

✓
.546

1.48

◆
= .74

D = {(x
i

,y
i

)|i = 1 . . . N}

y
i

2 {�1, 1}

g(x
i

) = sign(w|x+ b)

w|x+ b = 0 x on the decision boundary
w|x+ b < 0 x “below” the decision boundary
w|x+ b > 0 x “above” the decision boundary

min
w,b

1

2
||w||2 such that y(i)

�
w|x(i) + b

� � 1 8i

max
↵

min
w,b

1

2
||w||2 �

NX

i=1

↵
i

⇥
y(i)(w|x(i) + b

�� 1
⇤

max
↵

NX

i=1

↵
i

� 1

2

X

i

X

j

↵
i

↵
j

y(i)y(j)x(i)x(j)

subject to ↵
i

� 0 and
X

i

↵
i

y(i) = 0

w =

NX

i=1

↵
i

y(i)x(i) and b = y(i) � w|x(i) for any x(i) s.t. ↵
i

6= 0

8

p(Y |x1, x2, . . . , xn

)

/ p(Y, x1, x2, . . . , xn

)

= p(x1|x2, . . . , xn

, Y ) . . . p(x
n

|Y )p(Y )

= p(x1|Y )p(x2|Y ) . . . p(x
n

|Y )p(Y )

= p(Y )

nY

i=1

p(x
i

|Y )

Accuracy =
7 + 8

7 + 8 + 2 + 3
=

15

20
= .75

Precision =
7

7 + 3
= .70

Recall =
7

7 + 2
= .78

F1-score = 2

✓
.70 · .78
.70 + .78

◆
= 2

✓
.546

1.48

◆
= .74

D = {(x
i

,y
i

)|i = 1 . . . N}

y
i

2 {�1, 1}

g(x
i

) = sign

✓X

i

↵
i

y(i)x(i)x+ b

◆

w|x+ b = 0 x on the decision boundary
w|x+ b < 0 x “below” the decision boundary
w|x+ b > 0 x “above” the decision boundary

min
w,b

1

2
||w||2 such that y(i)

�
w|x(i) + b

� � 1 8i

max
↵

min
w,b

1

2
||w||2 �

NX

i=1

↵
i

⇥
y(i)(w|x(i) + b

�� 1
⇤

max
↵

NX

i=1

↵
i

� 1

2

X

i

X

j

↵
i

↵
j

y(i)y(j)x(i)x(j)

subject to ↵
i

� 0 and
X

i

↵
i

y(i) = 0

w =

NX

i=1

↵
i

y(i)x(i) and b = y(i) � w|x(i) for any x(i) s.t. ↵
i

6= 0

8



11/6/13	  

5	  

Φ:  x → φ(x) 

Non-linear SVMs 

¨  General idea:   the original feature space can always be 
mapped to some higher-dimensional feature space 
where the training set is separable: 

¨  The linear classifier relies on an inner product between vectors 
xi

Txj 

 

¨  If every example is mapped into a high-dimensional space via 
some transformation  Φ:  x → φ(x) then the inner product 
becomes: 

¨  A kernel function is some function that corresponds to a dot 
product in some transformed feature space: 

 

x 

The “Kernel” trick 

K(xi,xj)= φ(xi) 
Tφ(xj) 
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*	  

The “Kernel” trick 

¨  The kernel K may be cheaper to compute then the 
transformation φ 
¤  Implictly do the transformation 

Sec. 15.2.3 

15

We can also write this as

K(x, z) =

(

n
∑

i=1

xizi

)(

n
∑

j=1

xizi

)

=
n
∑

i=1

n
∑

j=1

xixjzizj

=
n
∑

i,j=1

(xixj)(zizj)

Thus, we see that K(x, z) = φ(x)Tφ(z), where the feature mapping φ is given
(shown here for the case of n = 3) by

φ(x) =
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Note that whereas calculating the high-dimensional φ(x) requires O(n2) time,
finding K(x, z) takes only O(n) time—linear in the dimension of the input
attributes.

For a related kernel, also consider

K(x, z) = (xT z + c)2

=
n
∑

i,j=1

(xixj)(zizj) +
n
∑

i=1

(
√
2cxi)(

√
2czi) + c2.

(Check this yourself.) This corresponds to the feature mapping (again shown
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Kernels 

Why use kernels? 
n Make non-separable problem separable. 
n Map data into better representational space 

 
Common kernels 

n Linear 
n Polynomial K(x,z) = (1+xTz)d 

n Radial basis function (infinite dimensional space) 
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SVMs Summary 

¨  The classifier is a decision boundary (separating 
hyperplane) 

¨  Most “important” training points are support vectors which 
define the hyperplane 

¨  Quadratic optimization algorithms can identify which 
training points are support vectors (vectors with non-zero 
Lagrange multipliers) 

¨  In the dual formation and in classifying an example, the 
training points appear only inside inner products 

¨  Kernels allow us to efficiently map data to higher 
dimensional space 

 

Ensembles of Classifiers 
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Which classifier should I use? 

¨  Is there a classifier that is optimal for all 
classification problems? 

¨  Factors to take into account: 
¤ How much training data is available? 
¤ How simple/complex is the problem? (linear vs. 

nonlinear decision boundary) 
¤ How noisy/skewed is the training data? 
¤ How stable is the problem over time? 
¤  Is it a singly-labeled or multi-labeled problem? Are the 

labels correlated? 

How Much Data? 

¨  Learning theory (PAC learning) 
¤  Gives theoretical bounds on how much training data you need for a 

given accuracy (AIMA 18.5) 
 

¨  Very Little 
¤  There are empirical results that naïve Bayes should do well in such 

circumstances (Ng and Jordan 2002 NIPS) 
¤  The interesting theoretical answer is to explore semi-supervised training 

methods: Bootstrapping, EM over unlabeled documents, … 
¤  The practical answer is to get more labeled data as soon as you can 
 

¨  A reasonable amount of data 
¤  Start with SVMs 
 

¨  A lot of data? 
¤  expensive methods like SVMs (train time) or kNN (test time) are quite 

impractical 
¤  Naïve Bayes! - with lots of data, simple methods work well 
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Ensembles of Classifiers 

¨  Ensemble - A group of items viewed as a whole 
rather than individually 

¨  An ensemble of classifiers – A group of classifiers 
whose predictions are combined to produce one 
final prediction 

¨  Benefits 
¤ Harder to make a wrong prediction 
¤ More expressive hypothesis 

Ensemble of decision trees 

¨  Combine the prediction of each decision tree using 
majority vote 

¨  Variation of this called a Random Forest 
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Figure 18.6 FILES: figures/induced-restaurant-tree.eps (Tue Nov 3 16:23:04 2009). The deci-
sion tree induced from the 12-example training set.

… 
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Figure 18.2 FILES: figures/restaurant-tree.eps (Tue Nov 3 16:23:29 2009). A decision tree for
deciding whether to wait for a table.
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Ensemble of linear classifiers 

¨  More expressive than any one linear classifier by itself 

224 Chapter 18. Learning from Examples
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Figure 18.32 FILES: figures/ensemble-expressiveness.eps (Tue Nov 3 16:22:41 2009). Illustra-
tion of the increased expressive power obtained by ensemble learning. We take three linear threshold
hypotheses, each of which classifies positively on the unshaded side, and classify as positive any exam-
ple classified positively by all three. The resulting triangular region is a hypothesis not expressible in
the original hypothesis space.

¨  Multi-expert combination methods 
¤  Global - All classifiers generate an output and all outputs are 

used in some way 
n  e.g. weighting, voting, averaging 

¤  Local – A gating model chooses one (or very few) of the 
classifiers responsible for generating the output for a specific 
input 
n  e.g. mixture of experts 

¨  Multi-stage combination 
¤  Classifiers are trained with, or tested on, only the instances where 

the previous classifiers are not accurate enough  
n  e.g. cascading 

Ensemble Schemes 
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Boosting 

¨  Boosting is one of the most common forms of 
constructing an ensemble of classifiers 
¤  Learn a series of weak classifiers, i.e. classifiers whose 

performance is slightly better than random chance 
¤ Weight each weak classifier to create a final strong 

classifier 
¤ Often the weight for each classifier is proportional to its 

accuracy 

¨  A well-known boosting algorithm is AdaBoost short for 
“Adaptive Boosting” (Freund and Schapire 1995) 

AdaBoost 
Section 18.10. Ensemble Learning 751

function ADABOOST(examples ,L,K ) returns a weighted-majority hypothesis
inputs: examples , set of N labeled examples (x1, y1), . . . , (xN , yN )

L, a learning algorithm
K , the number of hypotheses in the ensemble

local variables: w, a vector of N example weights, initially 1/N
h, a vector of K hypotheses
z, a vector of K hypothesis weights

for k = 1 to K do
h[k ]←L(examples , w)
error ← 0
for j = 1 to N do

if h[k ](xj) "= yj then error ← error + w[j]

for j = 1 to N do
if h[k ](xj) = yj then w[j]←w[j] · error/(1 − error )

w← NORMALIZE(w)
z[k ]← log (1 − error)/error

return WEIGHTED-MAJORITY(h, z)

Figure 18.34 The ADABOOST variant of the boosting method for ensemble learning. The
algorithm generates hypotheses by successively reweighting the training examples. The func-
tion WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the
highest vote from the hypotheses in h, with votes weighted by z.
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Figure 18.35 (a) Graph showing the performance of boosted decision stumps with K =5

versus unboosted decision stumps on the restaurant data. (b) The proportion correct on the
training set and the test set as a function of K , the number of hypotheses in the ensemble.
Notice that the test set accuracy improves slightly even after the training accuracy reaches 1,
i.e., after the ensemble fits the data exactly.
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AdaBoost 

¨  Generates a sequence of weak classifiers each focusing on the 
errors of the previous classifier 

¨  AdaBoost returns a strong classifier, i.e. a classifier that can 
perfectly classify the training data for large enough K 

¨  To classify a new example x: 
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�,w,b
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✓
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Bagging 

¨  Short for “Bootstrap aggregating” 
¨  Given training set D 

¤ Generate M new training sets Di where |Di| < |D| by 
sampling from D with replacement 

¤ This is a statistical technique known as bootstrapping 
¤ Train a classifier on each of the M new training sets 
¤ Combine output of M classifiers using averaging or 

voting 

¨  Random Forests (Breimen, 2001) 
¤ Bagged decision trees 
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Cascading classifiers 

¨  Order classifiers by 
complexity, e.g. 
representational complexity 

 

¨  Use ith classifier di only if 
previous classifiers are not 
confident 

 

¨  Good with high precision/
low recall classifiers 

Ensemble methods 

¨  Boosting 
¤ Weighted training sets 
¤  Ex: Adaboost 

¨  Bagging 
¤  Resampled training sets 
¤  Ex: Random forests 

¨  Cascading 
¤  Ordered collection of classifiers 


