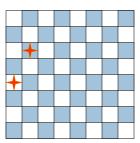
CONSTRAINT SATISFACTION

Today

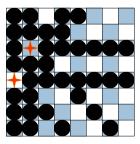
- □ Reading
 - □ AIMA Chapter 6
- □ Goals
 - Constraint satisfaction problems (CSPs)
 - Types of CSPs
 - Inference
 - □ Search + Inference

8-queens problem



How would you go about deciding where to put a third queen on the board in column 3?

8-queens problem



How would you go about deciding where to put a third queen on the board in column 3?

8-queens problem

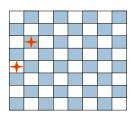
- This problem includes a set of constraints
- As a result, we need more than just a successor function and goal test
- We need a way to propagate the constraints imposed by one queen to the others and a way to detect early failure
 - Explicitly represent constraints
 - Algorithm to manipulate constraints

Constraint satisfaction problems

- \square Set of variables $\{X_1, X_2, ..., X_n\}$
- $\hfill\square$ Each variable X_i has a domain D_i of possible values
- \square Set of constraints $\{C_1, C_2, ..., C_p\}$
 - Each constraint C_k involves a subset of variables and specifies the allowable combinations of values to these variables
- □ A state is an assignment of values to some or all of the variables
 - If the assignment doesn't violate any constraints we say it is consistent or legal
- The goal test is checking for a consistent and complete assignment

Example: 8-queens problems

- □ Variable?
- □ Domain?
- □ Constraints?

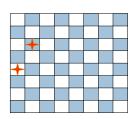


Example: 8-queens problems

- \Box Variables: one for each queen $\{X_1, ..., X_8\}$
- □ Domain: indicates row D = $\{1,2,...,8\}$
- □ Constraints:

$$X_i = k \Longrightarrow X_j \neq k \quad \forall i \neq j$$

 $X_i = k_i, X_j = k_j \Longrightarrow |i - j| \neq |k_i - k_j|$



Example: Map coloring

- □ Variables: {WA, NT, SA, Q, NSW, V, T}
- □ Domains: {red, blue, green}
- □ Constraints: adjacent regions have different colors
 - □ Implicit: WA \neq NT, WA \neq SA, SA \neq NT, NT \neq Q,...
 - \blacksquare Explicit: (WA,NT) \in {(red,green), (red,blue),...}

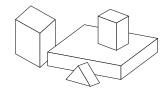
Example: Task scheduling

- □ Variables: {AxleF, AxleB, WheelRF, WheelLF,...,Inspect}
- Domains: Time task starts $D = [0, 1, 2, ..., \infty)$
- □ Constraints:
 - Axle must be done before the wheel
 - AxleF + 10 < WheelLF
 - AxleF + 10 < WheelRF
 - The front axle and the back axle cannot be done at the same time
 - (AxleF + 10 < AxleB) OR (AxleB + 10 < AxleF)
 - Everything must be done within 30 minutes
 - Change domains to have upper bound 30 min.

More examples

- □ More toy examples
 - □ sudoku, cryptarithmetic

- □ Real-world applications
 - □ Interpreting lines in 3D
 - Assignment problems, e.g. who teaches what class?
 - □ Timetable problems, e.g. which class offered when? where?
 - Transportation scheduling
 - Factory scheduling
 - Circuit layout



Types of CSPs - variables

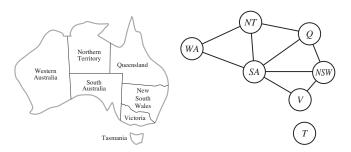
- □ Discrete variables
 - □ Finite domains
 - size d means O(dⁿ) possible assignments to explore
 - Infinite domains
 - Linear constraints (e.g. $T_1 + d_1 \le T_2$) are solvable
 - Non-linear constraints undecidable
- □ Continuous variables
 - linear programming problems with linear equality or inequality constraints solvable in polynomial time

Types of CSPs - constraints

- □ Unary constraints involve a single variable
 - e.g. SA ≠ green
- □ Binary constraints involve pairs of variables
 - SA ≠ NSW
 - A binary CSP can be illustrated using a constraint graph
- □ Higher-order constraints
 - e.g. A, B, and C cannot be in the same grouping
 - e.g. AllDiff (all variables must be assigned different values)
- □ Preference constraints
 - costs on individual variable assignments
 - constraint optimization problem

Constraint Graph

- Useful for binary constraint CSPs where each constraint relates (at most) two variables
- Nodes correspond to variables
- Edges (arcs) link two variables that participate in a constraint
- Use graph to speed up search



Inference: constraint propagation

- Use the constraints to reduce the number of legal values for a variable
- Possible to find a solution without searching
 - Node consistency
 - A node is node-consistent if all values in its domain satisfy the unary constraints
 - Arc consistency
 - A node X_i is arc-consistent w.r.t. node X_j if for every value in D_i there exists a value in D_i that satisfies the binary constraint
 - Algorithm AC-3
 - Other types of consistency (path consistency, k-consistency, global constraints)

AC-3 algorithm for Arc consistency

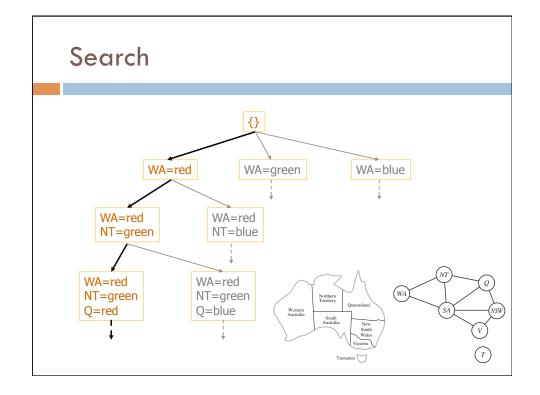
```
function AC-3(csp) returns false if inconsistency found, true otherwise
     queue ← all arcs in csp
     while queue not empty
           (X_{i}, X_{i}) \leftarrow REMOVE-FIRST(queue)
           if REMOVE-INCONSISTENT-VALUES(X, X,)
                 if size Di == 0 return false
                 for each arc (X_k, X_i)
                       add (X<sub>k</sub>, X<sub>i</sub>) to queue
     return true
function REMOVE-INCONSISTENT-VALUES(Xi, Xi)
     revised ← false
     for each x in D;
           if \nexists y in D_i s.t. (x,y) satisfies constraints
                 delete x from D;
                 revised ← true
     return revised
```

 $O(cd^3)$

AC-3 algorithm for Arc consistency function AC-3(csp) returns false if inconsistency found, true otherwise queue \leftarrow all arcs in csp constraints (arcs) d domain size (X_i,X_j) \leftarrow REMOVE-FIRST(queue) if REMOVE-INCONSISTENT-VALUES(X_i, X_j) if size Di == 0 return false for each arc (X_k, X_j) add (X_k, X_j) to queue

function REMOVE-INCONSISTENT-VALUES(X_i , X_j) revised — false for each x in D_i if \nexists y in D_j s.t. (x,y) satisfies constraints delete x from D_i revised — true return revised

return true



Backtracking Search

```
function CSP-BACKTRACKING(assignment) returns a solution or failure

if assignment complete return assignment

X ← select unassigned variable

D ← select an ordering for the domain of X

for each value in D

if value is consistent with assignment

add (X = value) to assignment

(ADD INFERENCE HERE)

result ← CSP-BACKTRACKING(assignment)

if result ≠ failure return result

remove (X = value) from assignment

return failure
```

Backtracking Search

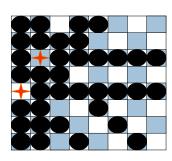
- Backtracking search is the basic uninformed algorithm for solving CSPs
- □ Idea 1: One variable at a time
 - Variable assignments are commutative so fix ordering
 - \blacksquare i.e. (WA = red, NT = green) is the same as (NT = green, WA = red)
- □ Idea 2: Check constraints as we go
 - Consider only values which do not conflict with previous assignments
 - May take some computation to check
 - "incremental goal test"
 - □ (Additional inference is optional, e.g. arc-consistency)
- Depth-first search with these 2 improvements is called backtracking search

Improving backtracking search

- Ordering
 - Which variable X should be assigned a value next?
 - □ In which order should its domain D be sorted?
- □ Incorporating inference
 - □ Can we detect inevitable failure early?
- Structure
 - □ Can we exploit the problem structure?

Ordering

□ Which variable should we choose?



Ordering

- □ Variable ordering
 - Minimum-remaining values heuristic Choose the variable with the fewest "legal" moves remaining
 - Degree heuristic Choose variable involved in the largest number of constraints with remaining unassigned variables
- □ Value ordering
 - Least-constraining value heuristic Choose the value that rules out the fewest choices for the neighboring variables

Improving backtracking search

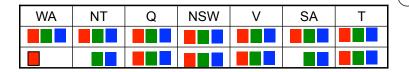
- Ordering
 - Which variable X should be assigned a value next?
 - □ In which order should its domain D be sorted?
- Incorporating inference
 - □ Can we detect inevitable failure early?
- Structure
 - Can we exploit the problem structure?

Incorporating inference: forward checking

- \square After an assignment X = x, look at each unassigned variable Y connected to X by a constraint
 - \square Delete from Y's domain any value inconsistent with X = x
 - Equivalent to ensuring all arcs of the form (Y, X) are arc consistent

Incorporating inference: forward checking

- \square After an assignment X = x, look at each unassigned variable Y connected to X by a constraint
 - \square Delete from Y's domain any value inconsistent with X = x
 - Equivalent to ensuring all arcs of the form (Y, X) are arc consistent



Incorporating inference: forward checking

- \square After an assignment X = x, look at each unassigned variable Y connected to X by a constraint
 - \square Delete from Y's domain any value inconsistent with X = x

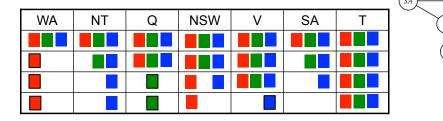
Equivalent to ensuring all arcs of the form (Y, X) are arc consistent

Incorporating inference: forward checking

- \square After an assignment X = x, look at each unassigned variable Y connected to X by a constraint
 - \Box Delete from Y's domain any value inconsistent with X = x

Equivalent to ensuring all arcs of the form (Y, X) are arc consistent

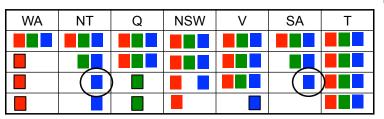
(WA)



Incorporating inference: forward checking

- After an assignment X = x, look at each unassigned variable Y connected to X by a constraint
 - \Box Delete from Y's domain any value inconsistent with X = x

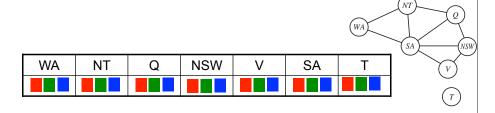
Equivalent to ensuring all arcs of the form (Y, X) are arc consistent



Could have detected earlier that things were going wrong!

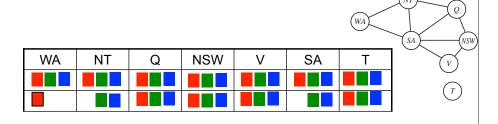
Incorporating inference: AC-3

□ Can also infer path consistency based on triples of variables and k-consistency



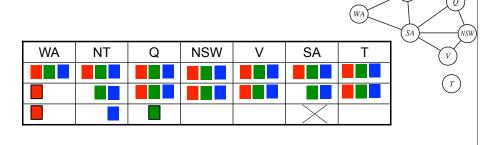
Incorporating inference: AC-3

□ Can also infer path consistency based on triples of variables and k-consistency



Incorporating inference: AC-3

□ Can also infer path consistency based on triples of variables and k-consistency

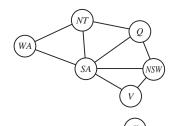


Improving backtracking search

- Ordering
 - Which variable X should be assigned a value next?
 - □ In which order should its domain D be sorted?
- □ Incorporating inference
 - □ Can we detect inevitable failure early?
- Structure
 - □ Can we exploit the problem structure?

Structure of the constraint graph

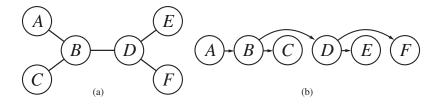
- Independent subproblems
 - Find connected components of the constraint graph
 - e.g. Tasmania and the mainland are independent
 - □ If we can split n variables into c subproblems of n/c variables each: $O(d^n) \longrightarrow O(d^c n/c)$



Tasmania is independent of the mainland!

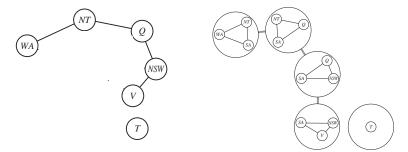
Structure of the constraint graph

- □ Tree structured constraint graphs
 - □ Can solve in linear time using AC-3



Structure of the constraint graph

- □ Reduction to a tree structured graph
 - □ Cycle cutset a subset of the variables whose removal creates a tree.
 - □ Tree decomposition Divide graph into subproblems, solve independently merge the solutions



CSP Summary

- □ Constraint Satisfaction Problems (CSPs)
- □ Solving CSPs using inference
- □ Solving CSPs using search
 - Backtracking algorithm = DSF + constraints checking
 - □ General (not problem-specific) heuristics
- □ Improving Backtracking
 - Variable and value ordering
 - Inference
 - Structure

