CLUSTERING

Quiz information

\square The second midterm quiz is on Thursday (11/21)
\square In-class (75 minutes!)
\square Allowed one two-sided (8.5×11) cheat sheet
\square Solutions for optional problems to HW5 posted today

Quiz information

Covered

- Markov models, filtering, smoothing
\square Supervised learning, decision trees
\square Perceptrons, neural networks
\square Support vector machines, naïve Bayes
- Ensembles
- Clustering (today's lecture only)

Not Covered

- Prediction, Most likely explanation, Viterbi Algorithm
- Particle filtering
- Pruning decision trees
\square Won't ask you to derive Delta algorithm, Backprop., SVMs
- Expectation Maximization
- No calculator needed

Today

Reading

\square Introduction to Information Retrieval (IR) Ch. 16, 17

Goals

\square Flat clustering algorithms
K-means

- Hierarchical clustering algorithms
- Agglomerative clustering
- Divisive clustering (it's divisive!)
\square Evaluating clusters

Unsupervised Learning

Learning without labels
\square Often comes down to clustering
\square Can be used as a surrogate for supervised learning

$D=$| \mathbf{x}_{1} | \mathbf{x}_{2}
 x_{11} x_{12} x_{13} \ldots $x_{1 M}$
 x_{21} x_{22} x_{23} \ldots $x_{2 M}$

 \mathbf{x}_{N}
 $x_{\mathrm{N} 1}$ $x_{\mathrm{N} 2}$ $x_{\mathrm{N} 3}$ \ldots x_{NM} |
| :--- | :--- | :--- | :--- | :--- | :--- |

Clustering

Grouping data into (hopefully useful) setsWhy do clustering?
\square Labeling is costly
\square Data pre-processing

- Text Classification (e.g., search engines, Google Sets)
\square Hypothesis Generation/Data Understanding ■ Clusters might suggest natural groups.
\square Visualization

Terminology

\square An m-clustering of D is a partition of D into sets (clusters) $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{m}}$ such that
\square The clusters are non-empty

- The union of the clusters is D

The intersection of the clusters is empty

The centroid of a cluster is the mean of all the elements in the cluster

How many possible clusterings?

Stirling number of the second kind
$\square \mathrm{n}$ - size of dataset
$\square \mathrm{m}$ - number of clusters

$$
\begin{aligned}
S(n, m) & =\frac{1}{m!} \sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} i^{n} \\
S(15,3) & =2,375,101 \\
S(20,4) & =45,232,115,901 \\
S(100,5) & \approx 10^{68}
\end{aligned}
$$

How many possible clusterings?

We can't try all possible clusterings.

Clustering algorithms look at a small fraction of all partitions of the data.

The exact partitions tried depend on the kind of clustering used.

$$
S(n, m)=\frac{1}{m!} \sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} i^{n}
$$

Types of clustering algorithms

\square Flat versus Hierarchical

- Flat algorithms return an unstructured set of clusters
\square Hierarchical algorithms return a hierarchy of clusters
\square Sequential (online) versus Batch
- Sequential algorithms are typically fastHard versus soft
\square Hard algorithms make a hard assignment of elements to clusters
- Soft algorithms compute a distribution over clusters for each element

K-means Clustering

The most well-known (widely-used) clustering algorithm
Minimizes the sum of the squared distances of each vector
from its centroid:

$$
\begin{aligned}
\left\|\vec{x}-\mu_{i}\right\|_{2} & =\left(\sum_{m=1}^{M}\left(x_{m}-\mu_{i m}\right)^{2}\right)^{1 / 2} \longleftarrow \text { Euclidean distance } \\
\text { RSS } & =\sum_{k=1}^{K} \sum_{\vec{x} \in C_{k}}\left\|\vec{x}-\mu_{k}\right\|_{2}^{2} \longleftarrow \begin{array}{c}
\text { Residual sum of } \\
\text { squares }
\end{array}
\end{aligned}
$$

\square User must set K
Assumes instances x represented as normalized vectors in a real-valued space

K-means Clustering

```
K-means \(\left(\left\{\vec{x}_{1}, \ldots, \vec{x}_{N}\right\}, K\right)\)
    \(\left(\vec{s}_{1}, \vec{s}_{2}, \ldots, \vec{s}_{K}\right) \leftarrow\) SeLECTRANDOMSEEDS \(\left(\left\{\vec{x}_{1}, \ldots, \vec{x}_{N}\right\}, K\right)\)
    for \(k \leftarrow 1\) to \(K\)
    do \(\vec{\mu}_{k} \leftarrow \vec{s}_{k}\)
    while stopping criterion has not been met
    do for \(k \leftarrow 1\) to \(K\)
        do \(\omega_{k} \leftarrow\{ \}\)
        for \(n \leftarrow 1\) to \(N\)
        do \(j \leftarrow \arg \min _{j^{\prime}}\left|\vec{\mu}_{j^{\prime}}-\vec{x}_{n}\right|\)
        \(\omega_{j} \leftarrow \omega_{j} \cup\left\{\vec{x}_{n}\right\}\) (reassignment of vectors)
        for \(k \leftarrow 1\) to \(K\)
        do \(\vec{\mu}_{k} \leftarrow \frac{1}{\left|\omega_{k}\right|} \sum_{\vec{x} \in \omega_{k}} \vec{x}\) (recomputation of centroids)
    return \(\left\{\vec{\mu}_{1}, \ldots, \vec{\mu}_{K}\right\}\)
```


K-means Clustering

assignment of documents (iter. 1)

recomputation/movement of $\vec{\mu}^{\prime}$ s (iter. 1) $\vec{\mu}$'s after convergence (iter. 9)

K-means Clustering

\square Starting seeds (centroids)

- Randomly select K initial data points to be the centroids
- Run multiple K-means each with different random seeds
- Use results from a different clustering algorithm (run on random subset of data)
\square Stopping criteria
\square See IR for a number of possible stopping criteria. For example:
- Fixed number of iterations
\square Residual sum of squares (RSS) falls below threshold
\square Choosing K
Rules-of-thumb or experience
- Try multiple values for K and plot RSS. Look for the elbow.
- Add regularization term

Flat versus Hierarchical

K-means

\square Returns unstructured set of clusters
\square Requires user to determine K

- Non-deterministic
\square Linear run time O(IKNM)

Hierarchical (e.g. Agglomerative clustering)

\square Returns a hierarchy of clusters
No need to (initially) determine K
Deterministic
\square Quadratic run time

Hierarchical Clustering

\square Cluster data points based on distance metric or similarity measure
\square A norm is a function that assigns a positive real-valued number (representing length or size) with every vector in a vector space

- The p -norm $\left(L_{\mathrm{p}}\right)$ of a vector y in R^{M} is given by

$$
\|\vec{y}\|_{p}=\left(\sum_{m=1}^{M}\left|y_{m}\right|^{p}\right)^{1 / p} \quad \vec{y}=\vec{x}_{i}-\vec{x}_{j}
$$

\square A metric is a function that assigns a positive real-valued number (representing distance) to every pair of vectors in some vector space
\square Minkowski distance is given by

$$
d_{p}\left(\vec{x}_{i}, \vec{x}_{j}\right)=\left(\sum_{m=1}^{M}\left|x_{i m}-x_{j m}\right|^{p}\right)^{1 / p}
$$

Hierarchical Clustering

\square Minkowski distance is given by $\quad d_{p}\left(\vec{x}_{i}, \vec{x}_{j}\right)=\left(\sum_{m=1}^{M}\left|x_{i m}-x_{j m}\right|^{p}\right)^{1 / p}$
\square For $\mathrm{p}=1$, Manhattan distance $d_{1}\left(\vec{x}_{i}, \vec{x}_{j}\right)=\sum_{m=1}^{M}\left|x_{i m}-x_{j m}\right|$
\square For $p=2$, Euclidean distance
$d_{2}\left(\vec{x}_{i}, \vec{x}_{j}\right)=\left(\sum_{m=1}^{M}\left|x_{i m}-x_{j m}\right|^{2}\right)^{1 / 2}$Cosine similarity also common measure (Note inverse of distance)

$$
\cos \left(\vec{x}_{i}, \vec{x}_{j}\right)=\frac{\vec{x}_{i}^{\top} \vec{x}_{j}}{\left\|\vec{x}_{i}\right\|_{2}\left\|\vec{x}_{j}\right\|_{2}}=\frac{\sum_{m=1}^{M} x_{i m} \cdot x_{j m}}{\left\|\vec{x}_{i}\right\|_{2}\left\|\vec{x}_{j}\right\|_{2}}
$$

Hierarchical Clustering

Agglomerative clustering

\square Start with N clusters each with one data point
\square Merge similar clusters to form larger clusters until there is only a single cluster left

Divisive Clustering

\square Start with a single cluster containing all data points
\square Divide large clusters into smaller clusters until each cluster contains a single data point

Agglomerative Clustering

Agglomerative Clustering

Figure 17.2 A simple, but inefficient HAC algorithm.

Agglomerative Clustering

(a) single-link: maximum similarity
(b) complete-link: minimum similarity

(c) centroid: average inter-similarity (d) group-average: average of all similarities

Cluster similarity: Single-link

Single link

\square Similarity of c_{j} and $c_{i} U c_{m}$ is the similarity of their most similar members
\square Can result in unwanted "long" clusters due to chaining

$$
\operatorname{sim}\left(\left(c_{i} \cup c_{m}\right), c_{j}\right)=\max \left(\operatorname{sim}\left(c_{i}, c_{j}\right), \operatorname{sim}\left(c_{m}, c_{j}\right)\right)
$$

Cluster similarity: Single-link

Cluster similarity: Complete-link

Complete link
\square Similarity of c_{i} and $c_{i} U c_{m}$ is the similarity of their least similar members

- Makes "tighter" spherical clusters that are typically preferable.
\square Sensitive to outliers

$$
\operatorname{sim}\left(\left(c_{i} \cup c_{m}\right), c_{j}\right)=\min \left(\operatorname{sim}\left(c_{i}, c_{j}\right), \operatorname{sim}\left(c_{m}, c_{j}\right)\right)
$$

Cluster similarity: Complete-link

Cluster similarity: Group-average

\square Group-average (average-link)

- Uses all vectors in clusters c_{j} and $\mathrm{c}_{\mathrm{i}} \mathrm{U} \mathrm{c}_{\mathrm{m}}$ to compute similarity
- Average similarity between all pairs of vectors from c_{j} and $c_{i} U c_{m}$ (including pairs from same cluster)
- Efficient computing of the group-average can be done if using cosine similarity

$$
\underset{\substack{\text { Total number } \\ \text { of pairs }}}{\operatorname{sim}\left(c_{i}, c_{j}\right)=\frac{1}{\left(\left|c_{i}\right|+\left|c_{j}\right|\right)\left(\left|c_{i}\right|+\left|c_{j}\right|-1\right)} \sum_{\substack{\text { All pairs of distinct } \\ \text { vectors from } c_{i} \cup c_{j}}}^{\sum_{\substack{\vec{x}_{n} \\ \vec{x}_{n} \neq c_{i} \cup c_{m}}}} d\left(\vec{x}_{n}, \vec{x}_{m}\right)}
$$

Cluster similarity: Centroid

Centroid clustering

\square Similarity of cluster c_{j} and cluster $c_{i} U c_{m}$ is the similarity of their centroids

$$
\begin{aligned}
\operatorname{SIM-CENT}\left(\omega_{i}, \omega_{j}\right) & =\vec{\mu}\left(\omega_{i}\right) \cdot \vec{\mu}\left(\omega_{j}\right) \\
& =\left(\frac{1}{N_{i}} \sum_{d_{m} \in \omega_{i}} \vec{d}_{m}\right) \cdot\left(\frac{1}{N_{j}} \sum_{d_{n} \in \omega_{j}} \vec{d}_{n}\right) \\
& =\frac{1}{N_{i} N_{j}} \sum_{d_{m} \in \omega_{i}} \sum_{d_{n} \in \omega_{j}} \vec{d}_{m} \cdot \vec{d}_{n}
\end{aligned}
$$

- Equivalent to the average similarity of all pairs of documents from different clusters
- Similarity between clusters can increase as we merge clusters (known as inversions)
- Horizontal merge lines can be lower than the previous merge line

Cluster similarity: Centroid

Computational Complexity

\square In the first iteration, all HAC methods need to compute similarity of all pairs of N initial instances, which is $\mathrm{O}\left(N^{2}\right)$.
In each of the subsequent $N-2$ merging iterations, compute the distance between the most recently created cluster and all other existing clusters.
In order to maintain an overall $\mathrm{O}\left(\mathrm{N}^{2}\right)$ performance, computing similarity to each other cluster must be done in constant time.

- Often $\mathrm{O}\left(\mathrm{N}^{3}\right)$ if done in a naïve way
- or $O\left(N^{2} \log N\right)$ if done in a more clever way

Divisive Clustering

Top-down clustering
Divisive clustering algorithm uses a flat clustering algorithm as a subroutine
\square Start with all data points in one cluster
\square Split using a flat clustering algorithm
\square Apply recursively until each data point is in its own cluster
Can be more efficient than agglomerative
Benefits from complete information about the entire data set

Which clustering is correct?

\square Different techniques cluster the same data set differently.
\square Who is right? Is there a "right" clustering?

Which clustering is correct?

Internal criteria

\square A good clustering has high intra-cluster similarity and low inter-cluster similarity

External criteria
\square Use an external task (e.g. search, document classification) to validate the clustering
\square Requires labeled data

External Criteria

\square Purity
\square Set aside labels from labeled data
\square Cluster data

- Predicted label for each cluster is label with highest frequency

x

○

Compute accuracy: $\frac{5+4+3}{17}=0.71$

External Criteria

Normalized Mutual Information

\square Mutual Information is an information theoretic quantity similar to entropy and information gain

$$
\mathrm{I}(X, Y)=\sum_{y} \sum_{x} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}=\mathrm{H}(X)-\mathrm{H}(X \mid Y)
$$

\square How much information does the clustering contain about the class labels?

External Criteria

Normalized Mutual Information
\square Define random variables for the clustering and for the class label:

External Criteria

Normalized Mutual Information
\square Given by the equation:

$$
\operatorname{NMI}(\Omega, \mathbb{C})=\frac{I(\Omega ; \mathbb{C})}{[H(\Omega)+H(\mathbb{C})] / 2}
$$

\square Why are we normalizing by the entropy?

Rand Index

Two data points should be in the same cluster if and only if they have the same label

Define contingency table:

	same cluster	different clusters
same class same different classes	true positives (TP)	false negatives (FN)
	false positives (FP)	true negatives (TN)

\square Once we have a contingency table, we can compute the Rand Index which is just the accuracy

$$
\mathrm{RI}=\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN}}
$$

Rand Index Example

There are $\binom{17}{2}=136$ pairs of data points

	same cluster	diff. cluster
same class	20	24
diff class	20	72

$$
\mathrm{RI}=(20+72) / 136=0.68
$$

cluster 2
cluster 3

F-measure

Given the contingency table, we can compute the precision, recall, and F-measure

$$
\begin{gathered}
P=\frac{T P}{T P+F P} \quad R=\frac{T P}{T P+F N} \\
F_{\beta}=\left(1+\beta^{2}\right) \cdot \frac{\text { precision } \cdot \text { recall }}{\beta^{2} \cdot \text { precision }+ \text { recall }}
\end{gathered}
$$

The parameter β controls the weighting between precision and recall

Clustering Evaluation

	purity	NMI	RI	F_{5}
lower bound	0.0	0.0	0.0	0.0
maximum	1.0	1.0	1.0	1.0
value for example	0.71	0.36	0.68	0.46

All four measures range from 0 (really bad clustering) to 1 (perfect clustering).

