

Quiz information

Covered

- Markov models, filtering, smoothing
- Supervised learning, decision trees
- Perceptrons, neural networks
- Support vector machines, naïve Bayes
- Ensembles
- Clustering (today's lecture only)
- Not Covered
 - Prediction, Most likely explanation, Viterbi Algorithm
 - Particle filtering
 - Pruning decision trees
 - Won't ask you to derive Delta algorithm, Backprop., SVMs
 - Expectation Maximization
 - No calculator needed

Terminology

- □ An m-clustering of D is a partition of D into sets (clusters) $C_1, C_2, ..., C_m$ such that
 - The clusters are non-empty
 - The union of the clusters is D
 - The intersection of the clusters is empty
- The centroid of a cluster is the mean of all the elements in the cluster

Hierarchical Clustering

- $\Box \quad \mathsf{Minkowski \ distance \ is \ given \ by} \quad d_p(\vec{x}_i,\vec{x}_j) = \left(\sum_{m=1}^M |x_{im} x_{jm}|^p\right)^{1/p}$
- \square For p = 1, Manhattan distance $d_1(ec{x}_i, ec{x}_j) = \sum_{m=1}^M |x_{im} x_{jm}|$
- For p = 2, Euclidean distance $d_2(\vec{x}_i, \vec{x}_j) = \left(\sum_{m=1}^M |x_{im} x_{jm}|^2\right)^{1/2}$

Cosine similarity also common measure (Note inverse of distance)

$$\cos(\vec{x}_i, \vec{x}_j) = \frac{\vec{x}_i^{\mathsf{T}} \vec{x}_j}{||\vec{x}_i||_2 \ ||\vec{x}_j||_2} = \frac{\sum_{m=1}^M x_{im} \cdot x_{jm}}{||\vec{x}_i||_2 \ ||\vec{x}_j||_2}$$

- □ In the first iteration, all HAC methods need to compute similarity of all pairs of N initial instances, which is $O(N^2)$.
- In each of the subsequent N-2 merging iterations, compute the distance between the most recently created cluster and all other existing clusters.
- In order to maintain an overall O(N²) performance, computing similarity to each other cluster must be done in constant time.
 - Often $O(N^3)$ if done in a naïve way
 - or $O(N^2 \log N)$ if done in a more clever way

Normalized Mutual Information

Mutual Information is an information theoretic quantity similar to entropy and information gain

$$I(X, Y) = \sum_{y} \sum_{x} p(x, y) \log \frac{p(x, y)}{p(x)p(y)} = H(X) - H(X|Y)$$

How much information does the clustering contain about the class labels?

External Criteria

- Normalized Mutual Information
 Given by the equation:

$$\mathrm{NMI}(\Omega,\mathbb{C}) = \frac{I(\Omega;\mathbb{C})}{[H(\Omega) + H(\mathbb{C})]/2}$$

Why are we normalizing by the entropy?

Clustering Evaluation						
		purity	NMI	RI	F_5	
-	lower bound	0.0	0.0	0.0	0.0	
	maximum	1.0	1.0	1.0	1.0	
	value for example	0.71	0.36	0.68	0.46	
All four measures range from 0 (really bad clustering) to 1 (perfect clustering).						
						41