



## Quiz information

#### Covered

- Markov models, filtering, smoothing
- Supervised learning, decision trees
- Perceptrons, neural networks
- Support vector machines, naïve Bayes
- Ensembles
- Clustering (today's lecture only)
- Not Covered
  - Prediction, Most likely explanation, Viterbi Algorithm
  - Particle filtering
  - Pruning decision trees
  - Won't ask you to derive Delta algorithm, Backprop., SVMs
  - Expectation Maximization
  - No calculator needed







## Terminology

- □ An m-clustering of D is a partition of D into sets (clusters)  $C_1, C_2, ..., C_m$  such that
  - The clusters are non-empty
  - The union of the clusters is D
  - The intersection of the clusters is empty
- The centroid of a cluster is the mean of all the elements in the cluster



















#### **Hierarchical Clustering**

- $\Box \quad \mathsf{Minkowski \ distance \ is \ given \ by} \quad d_p(\vec{x}_i,\vec{x}_j) = \left(\sum_{m=1}^M |x_{im} x_{jm}|^p\right)^{1/p}$
- $\square$  For p = 1, Manhattan distance  $d_1(ec{x}_i, ec{x}_j) = \sum_{m=1}^M |x_{im} x_{jm}|$
- For p = 2, Euclidean distance  $d_2(\vec{x}_i, \vec{x}_j) = \left(\sum_{m=1}^M |x_{im} x_{jm}|^2\right)^{1/2}$

Cosine similarity also common measure (Note inverse of distance)

$$\cos(\vec{x}_i, \vec{x}_j) = \frac{\vec{x}_i^{\mathsf{T}} \vec{x}_j}{||\vec{x}_i||_2 \ ||\vec{x}_j||_2} = \frac{\sum_{m=1}^M x_{im} \cdot x_{jm}}{||\vec{x}_i||_2 \ ||\vec{x}_j||_2}$$



- □ In the first iteration, all HAC methods need to compute similarity of all pairs of N initial instances, which is  $O(N^2)$ .
- In each of the subsequent N-2 merging iterations, compute the distance between the most recently created cluster and all other existing clusters.
- In order to maintain an overall O(N<sup>2</sup>) performance, computing similarity to each other cluster must be done in constant time.
  - Often  $O(N^3)$  if done in a naïve way
  - or  $O(N^2 \log N)$  if done in a more clever way













Normalized Mutual Information

Mutual Information is an information theoretic quantity similar to entropy and information gain

$$I(X, Y) = \sum_{y} \sum_{x} p(x, y) \log \frac{p(x, y)}{p(x)p(y)} = H(X) - H(X|Y)$$

How much information does the clustering contain about the class labels?



# **External Criteria**

- Normalized Mutual Information
  Given by the equation:

$$\mathrm{NMI}(\Omega,\mathbb{C}) = \frac{I(\Omega;\mathbb{C})}{[H(\Omega) + H(\mathbb{C})]/2}$$

Why are we normalizing by the entropy?







| Clustering Evaluation                                                             |                   |        |      |      |       |    |
|-----------------------------------------------------------------------------------|-------------------|--------|------|------|-------|----|
|                                                                                   |                   |        |      |      |       |    |
|                                                                                   |                   | purity | NMI  | RI   | $F_5$ |    |
| -                                                                                 | lower bound       | 0.0    | 0.0  | 0.0  | 0.0   |    |
|                                                                                   | maximum           | 1.0    | 1.0  | 1.0  | 1.0   |    |
|                                                                                   | value for example | 0.71   | 0.36 | 0.68 | 0.46  |    |
| All four measures range from 0 (really bad clustering) to 1 (perfect clustering). |                   |        |      |      |       |    |
|                                                                                   |                   |        |      |      |       | 41 |