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CLUSTERING 

Quiz information 

!  The second midterm quiz is on Thursday (11/21) 
!  In-class (75 minutes!) 
!  Allowed one two-sided (8.5x11) cheat sheet 
!  Solutions for optional problems to HW5 posted 

today 
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Quiz information 

!  Covered 
!  Markov models, filtering, smoothing 
!  Supervised learning, decision trees 
!  Perceptrons, neural networks 
!  Support vector machines, naïve Bayes 
!  Ensembles 
!  Clustering (today’s lecture only) 

!  Not Covered 
!  Prediction, Most likely explanation, Viterbi Algorithm 
!  Particle filtering 
!  Pruning decision trees 
!  Won’t ask you to derive Delta algorithm, Backprop., SVMs 
!  Expectation Maximization 
!  No calculator needed 

Today 

!  Reading 
!  Introduction to Information Retrieval (IR) Ch. 16, 17 

!  Goals 
! Flat clustering algorithms 

" K-means 
! Hierarchical clustering algorithms 

" Agglomerative clustering 
" Divisive clustering (it’s divisive!) 

! Evaluating clusters 
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Unsupervised Learning 

!  Learning without labels 
! Often comes down to clustering 
! Can be used as a surrogate for supervised learning 

x1 

x2 

xN 

x11  x12 x13 … x1M 

x21  x22 x23 … x2M 

xN1  xN2 xN3 … xNM 

D = 

Clustering 

!  Grouping data into (hopefully useful) sets 
 
!  Why do clustering? 

! Labeling is costly 
! Data pre-processing 

" Text Classification (e.g., search engines, Google 
Sets) 

! Hypothesis Generation/Data Understanding 
" Clusters might suggest natural groups. 

! Visualization 
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Terminology 

!  An m-clustering of D is a partition of D into sets 
(clusters) C1, C2,…,Cm such that 

! The clusters are non-empty 
! The union of the clusters is D 
! The intersection of the clusters is empty 

!  The centroid of a cluster is the mean of all the 
elements in the cluster 

How many possible clusterings? 
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!  Stirling number of the second kind 
!  n – size of dataset 
! m – number of clusters 
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How many possible clusterings? 

!  We can’t try all possible clusterings. 
 

!  Clustering algorithms look at a small fraction of all 
partitions of the data. 

 

!  The exact partitions tried depend on the kind of 
clustering used. 
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Types of clustering algorithms 

!  Flat versus Hierarchical 
!  Flat algorithms return an unstructured set of clusters 
!  Hierarchical algorithms return a hierarchy of clusters 
 

!  Sequential (online) versus Batch 
!  Sequential algorithms are typically fast 
 

!  Hard versus soft 
!  Hard algorithms make a hard assignment of elements to clusters 
!  Soft algorithms compute a distribution over clusters for each 

element 
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K-means Clustering 

!  The most well-known (widely-used) clustering algorithm 
!  Minimizes the sum of the squared distances of each vector 

from its centroid: 

 

 
 

 

!  User must set K 

!  Assumes instances x represented as normalized vectors in a 
real-valued space 
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Euclidean distance 

Residual sum of 
squares 

K-means Clustering 

K-MEANS({!x1, . . . ,!xN}, K)
1 (!s1,!s2, . . . ,!sK) ← SELECTRANDOMSEEDS({!x1, . . . ,!xN}, K)
2 for k ← 1 to K
3 do !µk ←!sk
4 while stopping criterion has not been met
5 do for k ← 1 to K
6 do ωk ← {}
7 for n ← 1 to N
8 do j ← arg minj′ |!µj′ −!xn|

9 ωj ← ωj ∪ {!xn} (reassignment of vectors)
10 for k ← 1 to K
11 do !µk ←

1
|ωk|

∑!x∈ωk
!x (recomputation of centroids)

12 return {!µ1, . . . ,!µK}
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K-means Clustering 

Online edition (c)�2009 Cambridge UP
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! Figure 16.6 A K-means example for K = 2 in R2. The position of the two cen-
troids (!µ’s shown as X’s in the top four panels) converges after nine iterations.
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! Figure 16.6 A K-means example for K = 2 in R2. The position of the two cen-
troids (!µ’s shown as X’s in the top four panels) converges after nine iterations.

K-means Clustering 

!  Starting seeds (centroids) 
!  Randomly select K initial data points to be the centroids 
!  Run multiple K-means each with different random seeds 

!  Use results from a different clustering algorithm (run on random subset 
of data) 

!  Stopping criteria 
!  See IR for a number of possible stopping criteria. For example: 

!  Fixed number of iterations 
!  Residual sum of squares (RSS) falls below threshold  

!  Choosing K 
!  Rules-of-thumb or experience 
!  Try multiple values for K and plot RSS. Look for the elbow. 

!  Add regularization term  
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Flat versus Hierarchical 

!  K-means 
!  Returns unstructured set of clusters 
!  Requires user to determine K 
! Non-deterministic 
!  Linear run time O(IKNM) 

!  Hierarchical (e.g. Agglomerative clustering) 
!  Returns a hierarchy of clusters 
! No need to (initially) determine K 
! Deterministic 
! Quadratic run time 

Hierarchical Clustering 

!  Cluster data points based on distance metric or similarity measure 

!  A norm is a function that assigns a positive real-valued number 
(representing length or size) with every vector in a vector space 

!  The p-norm (Lp) of a vector y in RM is given by  

!  A metric is a function that assigns a positive real-valued number 
(representing distance) to every pair of vectors in some vector space  

!  Minkowski distance is given by 
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Hierarchical Clustering 

!  Minkowski distance is given by 

 

!  For p = 1, Manhattan distance 

 
 

!  For p = 2, Euclidean distance 

!  Cosine similarity also common measure (Note inverse of distance) 
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Hierarchical Clustering 

!  Agglomerative clustering 
! Start with N clusters each with one data point 
! Merge similar clusters to form larger clusters until there 

is only a single cluster left 
 

!  Divisive Clustering 
! Start with a single cluster containing all data points 
! Divide large clusters into smaller clusters until each cluster 

contains a single data point 



11/14/13%

10%

Agglomerative Clustering O
n

lin
e ed

itio
n

 (c)�2009 C
am

b
rid

g
e U

P

17.1
H

ierarchical
agglom

erative
clu

sterin
g

379

1.0 0.8 0.6 0.4 0.2 0.0

Ag trade reform.
Back−to−school spending is up

Lloyd’s CEO questioned
Lloyd’s chief / U.S. grilling

Viag stays positive
Chrysler / Latin America

Ohio Blue Cross
Japanese prime minister / Mexico

CompuServe reports loss
Sprint / Internet access service

Planet Hollywood
Trocadero: tripling of revenues

German unions split
War hero Colin Powell
War hero Colin Powell

Oil prices slip
Chains may raise prices

Clinton signs law
Lawsuit against tobacco companies

suits against tobacco firms
Indiana tobacco lawsuit

Most active stocks
Mexican markets

Hog prices tumble
NYSE closing averages

British FTSE index
Fed holds interest rates steady

Fed to keep interest rates steady
Fed keeps interest rates steady
Fed keeps interest rates steady

!
F

ig
u

re
17.1

A
d

en
d

ro
g

ram
o

f
a

sin
g

le-lin
k

clu
sterin

g
o

f
30

d
o

cu
m

en
ts

fro
m

R
eu

ters-R
C

V
1.Tw

o
p

o
ssib

le
cu

ts
o

fth
e

d
en

d
ro

g
ram

are
sh

o
w

n
:

at0.4
in

to
24

clu
sters

an
d

at
0.1

in
to

12
clu

sters.

Online edition (c)�2009 Cambridge UP

17.1 Hierarchical agglomerative clustering 381

SIMPLEHAC(d1, . . . , dN)
1 for n← 1 to N
2 do for i← 1 to N
3 do C[n][i]← SIM(dn, di)
4 I[n]← 1 (keeps track of active clusters)
5 A← [] (assembles clustering as a sequence of merges)
6 for k← 1 to N − 1
7 do 〈i, m〉 ← arg max{〈i,m〉:i %=m∧I[i]=1∧I[m]=1} C[i][m]

8 A.APPEND(〈i, m〉) (store merge)
9 for j← 1 to N

10 do C[i][j]← SIM(i, m, j)
11 C[j][i]← SIM(i, m, j)
12 I[m]← 0 (deactivate cluster)
13 return A

! Figure 17.2 A simple, but inefficient HAC algorithm.

(a) single-link: maximum similarity (b) complete-link: minimum similarity

(c) centroid: average inter-similarity (d) group-average: average of all similarities

! Figure 17.3 The different notions of cluster similarity used by the four HAC al-
gorithms. An inter-similarity is a similarity between two documents from different
clusters.

Agglomerative Clustering 

Compute 
similarity matrix 

Find two clusters 
to merge 

The ith row and column of C are now 
the distances for the new cluster 

Similarity between cluster 
cj and cluster ci U cm 
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Agglomerative Clustering 

Online edition (c)�2009 Cambridge UP

17.1 Hierarchical agglomerative clustering 381

SIMPLEHAC(d1, . . . , dN)
1 for n← 1 to N
2 do for i← 1 to N
3 do C[n][i]← SIM(dn, di)
4 I[n]← 1 (keeps track of active clusters)
5 A← [] (assembles clustering as a sequence of merges)
6 for k← 1 to N − 1
7 do 〈i, m〉 ← arg max{〈i,m〉:i %=m∧I[i]=1∧I[m]=1} C[i][m]

8 A.APPEND(〈i, m〉) (store merge)
9 for j← 1 to N

10 do C[i][j]← SIM(i, m, j)
11 C[j][i]← SIM(i, m, j)
12 I[m]← 0 (deactivate cluster)
13 return A

! Figure 17.2 A simple, but inefficient HAC algorithm.

(a) single-link: maximum similarity (b) complete-link: minimum similarity

(c) centroid: average inter-similarity (d) group-average: average of all similarities

! Figure 17.3 The different notions of cluster similarity used by the four HAC al-
gorithms. An inter-similarity is a similarity between two documents from different
clusters.

Cluster similarity: Single-link 

!  Single link 
! Similarity of cj and ci U cm is the similarity of their most 

similar members 
! Can result in unwanted “long” clusters due to chaining 

sim((ci∪cm ),cj ) =max(sim(ci,cj ), sim(cm,cj ))
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Cluster similarity: Single-link 
Sec. 17.2 

Cluster similarity: Complete-link 

!  Complete link 
!  Similarity of cj and ci U cm is the similarity of their least similar 

members 
! Makes �tighter��spherical clusters that are typically 

preferable. 
!  Sensitive to outliers 

sim((ci∪cm ),cj ) =min(sim(ci,cj ), sim(cm,cj ))



11/14/13%

13%

Cluster similarity: Complete-link 
Sec. 17.2 

Cluster similarity: Group-average 

!  Group-average (average-link) 
!  Uses all vectors in clusters cj and ci U cm to compute similarity 

!  Average similarity between all pairs of vectors from cj and ci U cm 
(including pairs from same cluster) 

!  Efficient computing of the group-average can be done if using cosine 
similarity 
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Cluster similarity: Centroid 

!  Centroid clustering 
!  Similarity of cluster cj and cluster ci U cm is the similarity of their 

centroids 

 
!  Equivalent to the average similarity of all pairs of documents from 

different clusters 
!  Similarity between clusters can increase as we merge clusters (known 

as inversions) 
"  Horizontal merge lines can be lower than the previous merge line 

 

SIM-CENT(ωi, ωj) = !µ(ωi) ·!µ(ωj)

= (
1
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!dm) · ( 1
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=
1

NiNj
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!dm · !dn

Cluster similarity: Centroid 
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Computational Complexity 

!  In the first iteration, all HAC methods need to compute 
similarity of all pairs of N initial instances, which is O(N2). 

!  In each of the subsequent N-2 merging iterations, compute 
the distance between the most recently created cluster 
and all other existing clusters. 

!  In order to maintain an overall O(N2) performance, 
computing similarity to each other cluster must be done in 
constant time. 
!  Often O(N3) if done in a naïve way 
!  or O(N2 log N) if done in a more clever way 

Sec. 17.2.1 

Divisive Clustering 

!  Top-down clustering 
!  Divisive clustering algorithm uses a flat clustering 

algorithm as a subroutine 
! Start with all data points in one cluster 
! Split using a flat clustering algorithm 
! Apply recursively until each data point is in its own 

cluster  
!  Can be more efficient than agglomerative  
!  Benefits from complete information about the entire 

data set 
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Which clustering is correct? 

!  Different techniques cluster the same data set 
differently. 

!  Who is right?  Is there a �right� clustering? 

Which clustering is correct? 
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Which clustering is correct? 

!  Internal criteria 
! A good clustering has high intra-cluster similarity and 

low inter-cluster similarity 
 

!  External criteria 
! Use an external task (e.g. search, document 

classification) to validate the clustering 
! Requires labeled data 
 

External Criteria 

!  Purity 
!  Set aside labels from labeled data 
! Cluster data 
!  Predicted label for each cluster is label with highest 

frequency 

! Compute accuracy: 

Online edition (c)�2009 Cambridge UP
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! Figure 16.4 Purity as an external evaluation criterion for cluster quality. Majority
class and number of members of the majority class for the three clusters are: x, 5
(cluster 1); o, 4 (cluster 2); and !, 3 (cluster 3). Purity is (1/17)× (5 + 4 + 3) ≈ 0.71.

purity NMI RI F5

lower bound 0.0 0.0 0.0 0.0
maximum 1 1 1 1
value for Figure 16.4 0.71 0.36 0.68 0.46

! Table 16.2 The four external evaluation measures applied to the clustering in
Figure 16.4.

Formally:

purity(Ω, C) =
1

N ∑
k

max
j

|ωk ∩ cj|(16.1)

where Ω = {ω1, ω2, . . . , ωK} is the set of clusters and C = {c1, c2, . . . , cJ} is
the set of classes. We interpret ωk as the set of documents in ωk and cj as the
set of documents in cj in Equation (16.1).

We present an example of how to compute purity in Figure 16.4.2 Bad
clusterings have purity values close to 0, a perfect clustering has a purity of
1. Purity is compared with the other three measures discussed in this chapter
in Table 16.2.

High purity is easy to achieve when the number of clusters is large – in
particular, purity is 1 if each document gets its own cluster. Thus, we cannot
use purity to trade off the quality of the clustering against the number of
clusters.

A measure that allows us to make this tradeoff is normalized mutual infor-NORMALIZED MUTUAL

INFORMATION

2. Recall our note of caution from Figure 14.2 (page 291) when looking at this and other 2D
figures in this and the following chapter: these illustrations can be misleading because 2D pro-
jections of length-normalized vectors distort similarities and distances between points.
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External Criteria 

!  Normalized Mutual Information 
! Mutual Information is an information theoretic quantity 

similar to entropy and information gain 

! How much information does the clustering contain about 
the class labels? 
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p(x, y) log
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p(x)p(y)
= H(X)�H(X|Y )

11

External Criteria 

!  Normalized Mutual Information 
! Define random variables for the clustering and for the 

class label: 

R.V. for the 
cluster 

R.V. for the 
class label 

Prob. data point is in 
cluster k and has label j 

Prob. data 
point is in 
cluster k 

Prob. data point 
has label j 

I(Ω; C) = ∑
k

∑
j

P(ωk ∩ cj) log
P(ωk ∩ cj)

P(ωk)P(cj)

= ∑
k

∑
j

|ωk ∩ cj|

N
log

N|ωk ∩ cj|

|ωk||cj|
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External Criteria 

!  Normalized Mutual Information 
! Given by the equation: 

! Why are we normalizing by the entropy? 

NMI(Ω, C) =
I(Ω; C)

[H(Ω) + H(C)]/2

is mutual information (cf. Chapter 13, page 272):

!  Two data points should be in the same cluster if and 
only if they have the same label 

!  Define contingency table: 

!  Once we have a contingency table, we can compute 
the Rand Index which is just the accuracy 

38%

Rand Index 
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Rand Index Example 

!  There are        = 136 pairs of data points 

same cluster diff. cluster 

same class 20 24 

diff class 20 72 

RI = (20+72)/136 = 0.68  

€ 

P =
TP

TP +FP

€ 

R =
TP

TP + FN

F-measure 

!  Given the contingency table, we can compute the 
precision, recall, and F-measure 

!  The parameter �controls the weighting between 
precision and recall 
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All four measures range from 0 (really bad 
clustering) to 1 (perfect clustering). 

 

Clustering Evaluation 


