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Project 5: Classification

 
Which Digit?

Which are Faces?

Introduction
In this project, you will design three classifiers: a naive Bayes classifier, a perceptron classifier and
a large-margin (MIRA) classifier. You will test your classifiers on two image data sets: a set of
scanned handwritten digit images and a set of face images in which edges have already been
detected. Even with simple features, your classifiers will be able to do quite well on these tasks
when given enough training data.

Optical character recognition (OCR) is the task of extracting text from image sources. The first data
set on which you will run your classifiers is a collection of handwritten numerical digits (0-9). This is
a very commercially useful technology, similar to the technique used by the US post office to route
mail by zip codes. There are systems that can perform with over 99% classification accuracy (see
LeNet-5 for an example system in action).

Face detection is the task of localizing faces within video or still images. The faces can be at any
location and vary in size. There are many applications for face detection, including human computer
interaction and surveillance. You will attempt a simplified face detection task in which your system
is presented with an image that has been pre-processed by an edge detection algorithm. The task
is to determine whether the edge image is a face or not. There are several systems in use that
perform quite well at the face detection task.

The code for this project includes the following files and data, available as a zip file.

Data file

data.zip Data file, including the digit and face data.

Files you will edit

naiveBayes.py The location where you will write your naive Bayes classifier.

perceptron.py The location where you will write your perceptron classifier.

mira.py The location where you will write your MIRA classifier.

dataClassifier.py

The wrapper code that will call your classifiers. You will also
write your enhanced feature extractor here. You will also use
this code to analyze the behavior of your classifier.

miniContest.py

If you decide to enter the miniContest, you will want to edit
this file to put in your classifier. Entering the minicontest is
optional, but the file must be present in your submission.

answers.py Answers to Question 2 and Question 4 go here.

Files you should read but NOT edit

Abstract super class for the classifiers you will write. 
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classificationMethod.py

Abstract super class for the classifiers you will write. 
(You should read this file carefully to see how the
infrastructure is set up.)

samples.py I/O code to read in the classification data.

util.py
Code defining some useful tools. You may be familiar with
some of these by now, and they will save you a lot of time.

mostFrequent.py
A simple baseline classifier that just labels every instance as
the most frequent class.

runMinicontest.py
The command you will use to run the minicontest, if you
decide to enter.

Files to Edit and Submit: You will fill in portions of naiveBayes.py, perceptron.py, mira.py,
answers.py and dataClassifier.py (only) during the assignment, and submit them. If you do the
minicontest, submit minicontest.py as well. You should submit these files with your code and
comments. Please do not change the other files in this distribution or submit any of our original files
other than these files.

Evaluation: Your code will be autograded for technical correctness. Please do not change the
names of any provided functions or classes within the code, or you will wreak havoc on the
autograder. However, the correctness of your implementation -- not the autograder's judgements --
will be the final judge of your score. If necessary, we will review and grade assignments individually
to ensure that you receive due credit for your work.

Academic Dishonesty: We will be checking your code against other submissions in the class for
logical redundancy. If you copy someone else's code and submit it with minor changes, we will
know. These cheat detectors are quite hard to fool, so please don't try. We trust you all to submit
your own work only; please don't let us down. If you do, we will pursue the strongest consequences
available to us.

Getting Help: You are not alone! If you find yourself stuck on something, contact the course staff
for help. Office hours, section, and the discussion forum are there for your support; please use
them. If you can't make our office hours, let us know and we will schedule more. We want these
projects to be rewarding and instructional, not frustrating and demoralizing. But, we don't know
when or how to help unless you ask.

Discussion: Please be careful not to post spoilers.
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Question 1 (6 points)

Getting Started

To try out the classification pipeline, run dataClassifier.py from the command line. This will
classify the digit data using the default classifier (mostFrequent) which blindly classifies every
example with the most frequent label.

python dataClassifier.py  

As usual, you can learn more about the possible command line options by running:

python dataClassifier.py -h  

We have defined some simple features for you. Later you will design some better features. Our
simple feature set includes one feature for each pixel location, which can take values 0 or 1 (off or
on). The features are encoded as a Counter where keys are feature locations (represented as
(column,row)) and values are 0 or 1. The face recognition data set has value 1 only for those pixels
identified by a Canny edge detector.

Implementation Note: You'll find it easiest to hard-code the binary feature assumption. If you do,
make sure you don't include any non-binary features. Or, you can write your code more generally,
to handle arbitrary feature values, though this will probably involve a preliminary pass through the
training set to find all possible feature values (and you'll need an "unknown" option in case you
encounter a value in the test data you never saw during training).

Naive Bayes

A skeleton implementation of a naive Bayes classifier is provided for you in naiveBayes.py. You will
fill in the trainAndTune function, the calculateLogJointProbabilities function and the
findHighOddsFeatures function.

Naive Bayes: Theory

A naive Bayes classifier models a joint distribution over a label  and a set of observed random
variables, or features, , using the assumption that the full joint distribution can be
factored as follows (features are conditionally independent given the label):

To classify a datum, we can find the most probable label given the feature values for each pixel,
using Bayes theorem:

Because multiplying many probabilities together often results in underflow, we will instead compute
log probabilities which have the same argmax:
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To compute logarithms, use math.log(), a built-in Python function.

Naive Bayes: Parameter Estimation
Our naive Bayes model has several parameters to estimate. One parameter is the prior
distribution over labels (digits, or face/not-face), .

We can estimate  directly from the training data: 

where  is the number of training instances with label y and n is the total number of training

instances.

The other parameters to estimate are the conditional probabilities of our features given each
label y: . We do this for each possible feature value ( ).

where  is the number of times pixel  took value  in the training examples of label y.

Naive Bayes: Smoothing
Your current parameter estimates are unsmoothed, that is, you are using the empirical estimates
for the parameters . These estimates are rarely adequate in real systems. Minimally, we

need to make sure that no parameter ever receives an estimate of zero, but good smoothing can
boost accuracy quite a bit by reducing overfitting.

In this project, we use Laplace smoothing, which adds k counts to every possible observation value:

If k=0, the probabilities are unsmoothed. As k grows larger, the probabilities are smoothed more
and more. You can use your validation set to determine a good value for k. Note: don't smooth
P(Y).

Question

Implement trainAndTune and calculateLogJointProbabilities in naiveBayes.py. In
trainAndTune, estimate conditional probabilities from the training data for each possible value of k
given in the list kgrid. Evaluate accuracy on the held-out validation set for each k and choose the
value with the highest validation accuracy. In case of ties, prefer the lowest value of k. Test your
classifier with:

python dataClassifier.py -c naiveBayes --autotune 

Hints and observations:

The method calculateLogJointProbabilities uses the conditional probability tables
constructed by trainAndTune to compute the log posterior probability for each label y given a
feature vector. The comments of the method describe the data structures of the input and
output.
You can add code to the analysis method in dataClassifier.py to explore the mistakes
that your classifier is making. This is optional.
When trying different values of the smoothing parameter k, think about the number of times
you scan the training data. Your code should save computation by avoiding redundant
reading.
To run your classifier with only one particular value of k, remove the --autotune option. This
will ensure that kgrid has only one value, which you can change with -k.
Using a fixed value of k=2 and 100 training examples, you should get a validation accuracy of
about 69% and a test accuracy of 55%.
Using --autotune, which tries different values of k, you should get a validation accuracy of
about 74% and a test accuracy of 65%.
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about 74% and a test accuracy of 65%.
Accuracies may vary slightly because of implementation details. For instance, ties are not
deterministically broken in the Counter.argMax() method.
To run on the face recognition dataset, use -d faces (optional).
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Question 2 (2 points)

Odds Ratios
One important tool in using classifiers in real domains is being able to inspect what they have
learned. One way to inspect a naive Bayes model is to look at the most likely features for a given
label.

Another, better, tool for understanding the parameters is to look at odds ratios. For each pixel
feature  and classes , consider the odds ratio: 

This ratio will be greater than one for features which cause belief in  to increase relative to .

The features that have the greatest impact at classification time are those with both a high
probability (because they appear often in the data) and a high odds ratio (because they strongly
bias one label versus another).

Question

Fill in the function findHighOddsFeatures(self, label1, label2). It should return a list of the
100 features with highest odds ratios for label1 over label2. The option -o activates an odds ratio
analysis. Use the options -1 label1 -2 label2 to specify which labels to compare. Running the
following command will show you the 100 pixels that best distinguish between a 3 and a 6.

python dataClassifier.py -a -d digits -c naiveBayes -o -1 3 -2 6  

Use what you learn from running this command to answer the following question. Which of the
following images best shows those pixels which have a high odds ratio with respect to 3 over 6?
(That is, which of these is most like the output from the command you just ran?)

(a) (b) (c) (d) (e)
To answer: please return 'a', 'b', 'c', 'd', or 'e' from the function q2 in answers.py.
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Question 3 (4 points)

Perceptron

A skeleton implementation of a perceptron classifier is provided for you in perceptron.py. You will
fill in the train function, and the findHighWeightFeatures function.

Unlike the naive Bayes classifier, a perceptron does not use probabilities to make its decisions.
Instead, it keeps a weight vector  of each class  (  is an identifier, not an exponent). Given a

feature list , the perceptron compute the class  whose weight vector is most similar to the input

vector . Formally, given a feature vector  (in our case, a map from pixel locations to indicators

of whether they are on), we score each class with: 

Then we choose the class with highest score as the predicted label for that data instance. In the
code, we will represent  as a Counter.

Learning weights

In the basic multi-class perceptron, we scan over the data, one instance at a time. When we come
to an instance , we find the label with highest score:

We compare  to the true label . If , we've gotten the instance correct, and we do

nothing. Otherwise, we guessed  but we should have guessed . That means that  should

have scored  higher, and  should have scored  lower, in order to prevent this error in the

future. We update these two weight vectors accordingly: 

Using the addition, subtraction, and multiplication functionality of the Counter class in util.py, the
perceptron updates should be relatively easy to code. Certain implementation issues have been
taken care of for you in perceptron.py, such as handling iterations over the training data and
ordering the update trials. Furthermore, the code sets up the weights data structure for you. Each
legal label needs its own Counter full of weights.

Question

Fill in the train method in perceptron.py. Run your code with:

python dataClassifier.py -c perceptron 

Hints and observations:

The command above should yield validation accuracies in the range between 40% to 70% and
test accuracy between 40% and 70% (with the default 3 iterations). These ranges are wide
because the perceptron is a lot more sensitive to the specific choice of tie-breaking than naive
Bayes.
One of the problems with the perceptron is that its performance is sensitive to several
practical details, such as how many iterations you train it for, and the order you use for the
training examples (in practice, using a randomized order works better than a fixed order). The
current code uses a default value of 3 training iterations. You can change the number of
iterations for the perceptron with the -i iterations option. Try different numbers of
iterations and see how it influences the performance. In practice, you would use the
performance on the validation set to figure out when to stop training, but you don't need to
implement this stopping criterion for this assignment.
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Question 4 (1 point)

Visualizing weights

Perceptron classifiers, and other discriminative methods, are often criticized because the
parameters they learn are hard to interpret. To see a demonstration of this issue, we can write a
function to find features that are characteristic of one class. (Note that, because of the way
perceptrons are trained, it is not as crucial to find odds ratios.)

Question

Fill in findHighWeightFeatures(self, label) in perceptron.py. It should return a list of the 100
features with highest weight for that label. You can display the 100 pixels with the largest weights
using the command:

python dataClassifier.py -c perceptron -w  

Use this command to look at the weights, and answer the following true/false question. Which of
the following sequence of weights is most representative of the perceptron?

(a)

(b)

Answer the question answers.py in the method q4, returning either 'a' or 'b'.
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Question 5 (6 points)

MIRA

A skeleton implementation of the MIRA classifier is provided for you in mira.py. MIRA is an online
learner which is closely related to both the support vector machine and perceptron classifiers. You
will fill in the trainAndTune function.

Theory
Similar to a multi-class perceptron classifier, multi-class MIRA classifier also keeps a weight vector 

 of each label . We also scan over the data, one instance at a time. When we come to an

instance , we find the label with highest score:

We compare  to the true label . If , we've gotten the instance correct, and we do

nothing. Otherwise, we guessed  but we should have guessed . Unlike perceptron, we update

the weight vectors of these labels with variable step size: 

where  is chosen such that it minimizes

subject to the condition that 

which is equivalent to

 subject to  and 

Note that, , so the condition  is always true given 

Solving this simple problem, we then have

However, we would like to cap the maximum possible value of  by a positive constant C, which
leads us to

Question

Implement trainAndTune in mira.py. This method should train a MIRA classifier using each value
of C in Cgrid. Evaluate accuracy on the held-out validation set for each C and choose the C with
the highest validation accuracy. In case of ties, prefer the lowest value of C. Test your MIRA
implementation with:

python dataClassifier.py -c mira --autotune 

Hints and observations:

Pass through the data self.max_iterations times during training.
Store the weights learned using the best value of C at the end in self.weights, so that these
weights can be used to test your classifier.
To use a fixed value of C=0.001, remove the --autotune option from the command above.
Validation and test accuracy when using --autotune should be in the 60's.
It might save some debugging time if the +1 term above is implemented as +1.0, due to
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It might save some debugging time if the +1 term above is implemented as +1.0, due to
division truncation of integer arguments. Depending on how you implement this, it may not
matter.
The same code for returning high odds features in your perceptron implementation should
also work for MIRA if you're curious what your classifier is learning.
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Question 6 (6 points)

Feature Design

Building classifiers is only a small part of getting a good system working for a task. Indeed, the
main difference between a good classification system and a bad one is usually not the classifier
itself (e.g. perceptron vs. naive Bayes), but rather the quality of the features used. So far, we have
used the simplest possible features: the identity of each pixel (being on/off).

To increase your classifier's accuracy further, you will need to extract more useful features from the
data. The EnhancedFeatureExtractorDigit in dataClassifier.py is your new playground. When
analyzing your classifiers' results, you should look at some of your errors and look for
characteristics of the input that would give the classifier useful information about the label. You can
add code to the analysis function in dataClassifier.py to inspect what your classifier is doing.
For instance in the digit data, consider the number of separate, connected regions of white pixels,
which varies by digit type. 1, 2, 3, 5, 7 tend to have one contiguous region of white space while the
loops in 6, 8, 9 create more. The number of white regions in a 4 depends on the writer. This is an
example of a feature that is not directly available to the classifier from the per-pixel information. If
your feature extractor adds new features that encode these properties, the classifier will be able
exploit them. Note that some features may require non-trivial computation to extract, so write
efficient and correct code.

Question

Add new features for the digit dataset in the EnhancedFeatureExtractorDigit function in such a
way that it works with your implementation of the naive Bayes classifier: this means that for this
part, you are restricted to features which can take a finite number of discrete values (and if you
have assumed that features are binary valued, then you are restricted to binary features). Note
that you can encode a feature which takes 3 values [1,2,3] by using 3 binary features, of which
only one is on at the time, to indicate which of the three possibilities you have. In theory, features
aren't conditionally independent as naive Bayes requires, but your classifier can still work well in
practice. We will test your classifier with the following command:

python dataClassifier.py -d digits -c naiveBayes -f -a -t 1000  

With the basic features (without the -f option), your optimal choice of smoothing parameter should
yield 82% on the validation set with a test performance of 79%. You will receive 3 points for
implementing new feature(s) which yield any improvement at all. You will receive 3 additional
points if your new feature(s) give you a test performance greater than or equal to 84% with the
above command.

Mini Contest (3 points extra credit)
How well can you classify? Fill in code in minicontest.py for training and classification. To run your
classifier, use:

python dataClassifier.py -d digits -c minicontest

When you specify the minicontest classifier, features are extracted using
contestFeatureExtractorDigit. You are free to implement any classifier you want. You might
consider modifying Mira or NaiveBayes, for example. You should encode any tuning parameters
directly in minicontest.py.

The following command trains your classifier on 5000 examples and tests on a new set of 1000
digits:

python runMinicontest.py

(Note: you do not need to submit the generated output file minicontest_output.pickle). You
may use this information to help tune your classifier, but beware of overfitting! To ensure that your
classifier can generalize to new examples, we will evaluate its accuracy using an alternative training
and test set drawn from the same distribution.

Your classifier must take less than one hour to train on 5000 examples and classify 1000 test
examples (this is an upper bound; we expect most submissions to be signficantly faster than this).
We will not run your classifier in the autograder, except for a very small sanity check.

The 3 teams with the highest classification accuracy will receive 3, 2, and 1 points, respectively.
Don't forget to describe what you've done in your comments.
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Don't forget to describe what you've done in your comments.

Congratulations! You're finished with the CS 188 projects.

 


