

The Chain Rule

In general, the joint distribution of a set of random variables can be expressed as a product of conditional and marginal distributions

$$p(x_1, \dots, x_n) = p(x_1) \cdot p(x_2 | x_1) \dots p(x_n | x_1, \dots, x_{n-1})$$
$$= \prod_i p(x_i | x_1, \dots, x_{i-1})$$

Derived from repeated applications of the Product rule

Conditional independence

□ Two variables are conditionally independent if

$$p(X = x, Y = y | Z = z) = p(X = x | Z = z) \cdot p(Y = y | Z = z)$$

- □ In other words, given Z the variables X and Y are independent
- Examples
 - p(Fever, Headache) = p(Fever | Headache) p(Headache)
 - p(Fever, Headache | Flu) = p(Fever | Flu) p(Headache | Flu)

Inference by Variable Elimination

 Carry out sums from right to left storing intermediate results to avoid recomputation

$$p(B|j,m) = \alpha \ p(B) \sum_{e} p(e) \sum_{a} p(a|B,e) \ p(j|a) \ p(m|a)$$

= $\alpha \ f_1(B) \sum_{e} f_2(e) \sum_{a} f_3(A,B,E) \ f_4(A) \ f_5(A)$
= $\alpha \ f_1(B) \sum_{e} f_2(e) \ f_6(B,E)$
= $\alpha \ f_1(B) \ f_7(B)$

Results are stored in factors (matrices)

Two operations: pointwise multiplication and summation

