BAYESIAN NETWORKS

Today

\square Reading

- AIMA Chapter 14.1-14.4
\square Goals
\square Bayesian networks
\square (Exact inference in Bayesian networks)

Summary of distributions so far

$$
p(x)=\sum_{y} p(x, y)
$$

Marginal

$p(x \mid y)=\frac{p(x, y)}{p(y)}$

The Product Rule

\square Given the conditional and marginal distributions, we can compute the joint distribution using the Product Rule:

$$
p(x \mid y)=\frac{p(x, y)}{p(y)} \quad \Rightarrow \quad p(x, y)=p(x \mid y) \cdot p(y)
$$

Represents the joint distribution in a causal and more natural way:
\square Intelligence $=$ \{high, low $\}$
\square SAT $=\{$ high, low $\}$
$\square p($ Intelligence, SAT $)=p($ SAT \mid Intelligence $) p($ Intelligence $)$

The Chain Rule

\square In general, the joint distribution of a set of random variables can be expressed as a product of conditional and marginal distributions

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{n}\right) & =p\left(x_{1}\right) \cdot p\left(x_{2} \mid x_{1}\right) \ldots p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \\
& =\prod_{i} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
\end{aligned}
$$

Derived from repeated applications of the Product rule

Independence

\square Two variables are independent if knowing the value of one variable does not alter the distribution of the other variable
\square Mathematical definition:

$$
\begin{aligned}
p(X=x, Y=y) & =p(X=x \mid Y=y) \cdot p(Y=y) \\
& =p(X=x) \cdot p(Y=y)
\end{aligned} \quad \forall x, y
$$

\square The joint distribution now factors into the product of simpler distributions

- Example
- p(CoinToss1, CoinToss2) $=p($ CoinToss1) $p($ CoinToss2)
- p (CarAccident, 49ersWin) $=\mathrm{p}$ (CarAccident) p (49ersWin)

Conditional independence

Two variables are conditionally independent if
$p(X=x, Y=y \mid Z=z)=p(X=x \mid Z=z) \cdot p(Y=y \mid Z=z)$

In other words, given Z the variables X and Y are independent
Examples
$\square \mathrm{p}($ Fever, Headache $)=\mathrm{p}$ (Fever \mid Headache) p (Headache)
$\square p($ Fever, Headache \mid Flu $)=p($ Fever \mid Flu $) ~ p($ Headache \mid Flu $)$

Moving away from numerical quantities

"The traditional definition of independence uses equality of numerical quantities, as in

$$
p(x, y)=p(x) p(y)
$$

suggesting that one must test whether the joint distribution of X and Y is equal to the product of their marginals in order to determine whether X and Y are independent. By contrast people can easily and confidently detect dependencies, even though they may not be able to provide precise numerical estimates of probabilities. A person who is reluctant to estimate the probability of being burglarized the next day or of having a nuclear war within five years can nevertheless state with ease whether the two events are dependent, namely, whether knowing the truth of one proposition will alter the belief of the other."

\author{

- Judea Pearl
}

Moving away from numerical quantities

"It is usually easy for a domain expert to decide what direct influences exist in the domain - much easier, in fact, than actually specifying the probabilities themselves"
\square Humans can "easily and confidently" detect dependencies
\square Move away from numerical representation of the joint distribution (or the conditional distributions) to a representation that encodes dependencies

Bayesian Network

Bayesian networks represent dependencies among variables and concisely encode the full joint dist.

A Bayesian network is a directed acyclic graph where:
Nodes correspond to random variables
\square Directed edge btw pairs of nodes represent direct influence
\square Each node has a conditional probability distribution

$$
\mathrm{p}\left(\mathrm{X}_{\mathrm{i}} \mid \operatorname{Parents}\left(\mathrm{X}_{\mathrm{i}}\right)\right)
$$

$$
\text { Bayesian Network }=\text { Topology }+ \text { CPT }
$$

Bayesian Network Examples

\square Weather $=\{$ rainy, sunny, cloudy, snowy $\}$
\square Cavity $=\{$ yes, no $\}$
\square Toothache $=\{y e s$, no $\}$
\square Catch $=\{$ yes, no $\}$

Bayesian Network Examples

Bayesian Network Examples

p(Sprinkler | Rain)

Rain	Sprink
F	0.5
T	0.01

p(Grass|Sprinkler, Rain)

Sprink	Rain	Grass
F	F	0.0
F	T	0.8
T	F	0.9
T	T	0.99

Bayesian Network Examples

\square Burglary $=\{$ yes, no $\}$
\square Earthquake $=\{$ yes, no $\}$
\square Alarm $=\{$ yes, no $\}$
\square MaryCalls $=\{$ yes, no $\}$
\square JohnCalls $=\{$ yes no $\}$

Bayesian Network Examples

Example: MammoNet

Example: ARCO 1 (Forecasting Oil Prices)

Representing the joint distribution

The joint distribution is given by a product of the conditional distributions

$$
\begin{aligned}
p(j, m, a, \neg b, \neg e) & =p(j \mid m, a, \neg b, \neg e) p(m \mid a, \neg b, \neg e) p(a \mid \neg b, \neg e) p(b \mid \neg e) p(e) \\
& =p(j \mid a) p(m \mid a) p(a \mid \neg b, \neg e) p(b) p(e) \\
& =0.9 \cdot 0.7 \cdot 0.001 \cdot 0.999 \cdot 0.998
\end{aligned}
$$

If each variable has k parents, how many probabilities are required?
$\mathrm{N}=30$ binary variables and $\mathrm{k}=5$ parents each
\square Bayesian Network requires 960 probabilities
\square The full joint requires over a billion

Constructing a Bayesian Network

Step One: Determine an ordering of the random variables

$$
\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}
$$

Step Two: For each variable X_{i}, choose minimal set of nodes from $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}\right\}$ required to specify the conditional distribution

$$
\mathrm{p}\left(\mathrm{X}_{\mathrm{i}} \mid \operatorname{Parents}\left(\mathrm{X}_{\mathrm{i}}\right)\right)
$$

Step Three: Specify the conditional probability tables (CPTs):

- Interview experts
- Learn from data
- Learn discrete probabilities
- Specify a parametric formula, e.g. Gaussian distribution, and learn parameters, e.g. mean and variance, from data

Constructing a Bayesian Network

(MaryCalls, JohnCalls, Alarm, Burglary, Earthquake)

Constructing a Bayesian Network

(MaryCalls, JohnCalls, Alarm, Burglary, Earthquake)

(a)

(b)

Bayesian Networks terminology

Independence assumptions encoded in the Bayesian Network

Local Markov Assumption:
A node X is independent of its non-descendents

Non-descendent given its parents

Independence assumptions encoded in the Bayesian Network

Three Types of Connections

Linear

Converging

Connection patterns and independence

\square Linear connection: The two end variables are dependent on each other. The middle variable renders them independent.
\square Converging connection: The two end variables are independent of each other. The middle variable renders them dependent.
\square Divergent connection: The two end variables are dependent on each other. The middle variable renders them independent.

Commonly used Bayesian Networks

\square Naïve Bayes Classifier
\square Commonly used for text classification (and medical diagnosis)
$\square \mathrm{C}$ is the class (topic or label) of the document
\square The X variables represent the words in the document
 Artificial intelligence branch computer

Commonly used Bayesian Networks

\square Naïve Bayes Classifier
\square What are the independence assumptions encoded in this BN ?
\square Given these independence assumptions, how does the joint distribution factor?

- What are the distributions that must be specified?

Commonly used Bayesian Networks

Hidden markov model

\square Used for time series, e.g. speech recognition
\square What are the independence assumptions?

Inference in Bayesian Networks

\square Probabilistic inference refers to the task of computing some desired probability given other known probabilities (evidence)
\square Exact Inference

- Enumeration
- Variable elimination
\square Approximate Inference
- Direct sampling
- Rejection sampling
- Likelihood weighting
- MCMC

Recall: Burglary network

Inference by Enumeration

Step-One:-select the entries
in the table consistent with
the evidence (this becomes
our world)

Step Two: sum over the H
Step Three: Normalize variables to get the joint distribution of the query and evidence variables

$$
\begin{aligned}
p(b \mid j, m) & \propto \sum_{e} \sum_{a} p(b, j, m, e, a) \\
& =\sum_{e} \sum_{a} p(b) \cdot p(e) \cdot p(j \mid a) \cdot p(m \mid a) \cdot p(a \mid b, e) \quad \begin{array}{c}
\text { Conditional and joint differ only by } \\
\text { the normalizing constant }
\end{array} \\
& =p(b) \sum_{e} p(e) \sum_{a} p(j \mid a) \cdot p(m \mid a) \cdot p(a \mid b, e) \quad \text { Independencies read from } \mathrm{BN}
\end{aligned}
$$

\square Compute $\mathrm{p}(\mathrm{b} \mid i, \mathrm{~m})$ and $\mathrm{p}(-\mathrm{b} \mid \mathrm{i}, \mathrm{m})$ and then normalize
\square May compute the same expression more than once

Inference by Enumeration

Inference by Variable Elimination

Carry out sums from right to left storing intermediate results to avoid recomputation

$$
\begin{aligned}
p(B \mid j, m) & =\alpha p(B) \sum_{e} p(e) \sum_{a} p(a \mid B, e) p(j \mid a) p(m \mid a) \\
& =\alpha f_{1}(B) \sum_{e} f_{2}(e) \sum_{a} f_{3}(A, B, E) f_{4}(A) f_{5}(A) \\
& =\alpha f_{1}(B) \sum_{e} f_{2}(e) f_{6}(B, E) \\
& =\alpha f_{1}(B) f_{7}(B)
\end{aligned}
$$

Results are stored in factors (matrices)
Two operations: pointwise multiplication and summation

Inference by Variable Elimination

Point-wise multiplication of two factors

A	B	$\mathrm{f}_{1}(\mathrm{~A}, \mathrm{~B})$	B	C	$\mathrm{f}_{2}(\mathrm{~B}, \mathrm{C})$	A	B	C	$\mathrm{f}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})$
T	T	.3	T	T	.2	T	T	T	
T	F	.7	T	F	.8	T	T	F	
F	T	.9	F	T	.6	T	F	T	
F	F	.1	F	F	.4	T	F	F	
						F	T	T	
						F	T	F	
						F	F	T	
						F	F	F	

Summing out a variable corresponds to adding submatrices

Inference by Variable Elimination

\square Every variable that is not an ancestor of a query variable or evidence variable is irrelevant
\square Ordering of variables for summing out affects the time and space of VE
\square For polytrees (at most one path between any two nodes), VE is linear in the size of the network \square In general, time and space are exponential

