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BAYESIAN NETWORKS 

Today 

!  Reading 
! AIMA Chapter 14.1-14.4 

!  Goals 
! Bayesian networks 
!  (Exact inference in Bayesian networks) 
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Summary of distributions so far 
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3The Product Rule 

!  Given the conditional and marginal distributions, we 
can compute the joint distribution using the Product 
Rule: 

!  Represents the joint distribution in a causal and 
more natural way: 
!  Intelligence = {high, low} 
! SAT = {high, low} 
! p(Intelligence, SAT) = p(SAT|Intelligence) p(Intelligence) 
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The Chain Rule 

!  In general, the joint distribution of a set of random 
variables can be expressed as a product of 
conditional and marginal distributions 

!  Derived from repeated applications of the Product 
rule 
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Independence 

!  Two variables are independent if knowing the value of one 
variable does not alter the distribution of the other variable 

!  Mathematical definition: 

!  The joint distribution now factors into the product of simpler 
distributions 

!  Example 
!  p(CoinToss1, CoinToss2) = p(CoinToss1) p(CoinToss2) 
!  p(CarAccident, 49ersWin) = p(CarAccident) p(49ersWin) 
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Conditional independence 

p(X = x, Y = y|Z = z) = p(X = x|Z = z) · p(Y = y|Z = z)
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!  Two variables are conditionally independent if 

!  In other words, given Z the variables X and Y are independent 
!  Examples 

!  p(Fever, Headache) = p(Fever|Headache) p(Headache) 
!  p(Fever, Headache|Flu) = p(Fever|Flu) p(Headache|Flu) 

Moving away from numerical quantities 

“The traditional definition of independence uses equality of numerical 
quantities, as in 

    p(x, y) = p(x)p(y) 
 
suggesting that one must test whether the joint distribution of X and Y is 
equal to the product of their marginals in order to determine whether X 
and Y are independent. By contrast people can easily and confidently 
detect dependencies, even though they may not be able to provide 
precise numerical estimates of probabilities. A person who is reluctant 
to estimate the probability of being burglarized the next day or of 
having a nuclear war within five years can nevertheless state with ease 
whether the two events are dependent, namely, whether knowing the 
truth of one proposition will alter the belief of the other.” 

- Judea Pearl 
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Moving away from numerical quantities 

“It is usually easy for a domain expert to decide 
what direct influences exist in the domain – much 
easier, in fact, than actually specifying the 
probabilities themselves” 
 
!  Humans can “easily and confidently” detect 

dependencies 
 
!  Move away from numerical representation of the joint 

distribution (or the conditional distributions) to a 
representation that encodes dependencies 

Probabilistic Inference 

Joint distribution 

(Conditional) independence 

Answer any query but 
exponential in the number 

of variables 

Reduces the space 
requirements but 

necessitates numerical 
checking 

??? 

Can answer any query 
using a human’s intuitive 

ability to detect 
dependencies rather than 

numerical checking 
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Bayesian Network 

!  Bayesian networks represent dependencies among 
variables and concisely encode the full joint dist. 

 

!  A Bayesian network is a directed acyclic graph where: 
! Nodes correspond to random variables 
! Directed edge btw pairs of nodes represent direct influence 
! Each node has a conditional probability distribution 

   p(Xi | Parents(Xi)) 

Bayesian Network = Topology + CPT 

Bayesian Network Examples 

!  Weather = {rainy, sunny, cloudy, snowy} 
!  Cavity = { yes, no} 
!  Toothache = {yes, no} 
!  Catch = {yes, no} 

138 Chapter 14. Probabilistic Reasoning

Weather Cavity

Toothache Catch

Figure 14.1 FILES: figures/dentist-network.eps (Tue Nov 3 16:22:37 2009). A simple Bayesian
network in whichWeather is independent of the other three variables and Toothache and Catch are
conditionally independent, given Cavity .

P(Cavity)  

P(Weather)  

p(Catch|Cavity) p(Toothache|Cavity) 
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Bayesian Network Examples 

Sprinkler Rain 

Grass wet 
p(Grass|Sprinkler, Rain) 

Sprink Rain Grass 

F F 0.0 

F T 0.8 

T F 0.9 

T T 0.99 

p(Rain) = 0.2 p(Sprinkler) = 0.5 

Bayesian Network Examples 

Sprinkler Rain 

Grass wet 
p(Grass|Sprinkler, Rain) 

Sprink Rain Grass 

F F 0.0 

F T 0.8 

T F 0.9 

T T 0.99 

p(Rain) = 0.2 
Rain Sprink 

F 0.5 

T 0.01 

p(Sprinkler|Rain) 
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Bayesian Network Examples 

!  Burglary = {yes, no} 
!  Earthquake = { yes, no} 
!  Alarm = {yes, no} 
!  MaryCalls = {yes, no} 
!  JohnCalls = {yes no}  

Bayesian Network Examples 

139
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Figure 14.2 FILES: figures/burglary2.eps (Tue Nov 3 16:22:29 2009). A typical Bayesian net-
work, showing both the topology and the conditional probability tables (CPTs). In the CPTs, the letters
B, E, A, J , and M stand for Burglary , Earthquake , Alarm , JohnCalls, and MaryCalls , respec-
tively.
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Example: Car diagnosis 

Example: MammoNet 
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Example: ARCO1 (Forecasting Oil Prices) 

Example: Insurance 
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Representing the joint distribution 

!  The joint distribution is given by a product of the 
conditional distributions 

 

!  If each variable has k parents, how many 
probabilities are required? 

 

!  N=30 binary variables and k = 5 parents each 
!  Bayesian Network requires 960 probabilities  
!  The full joint requires over a billion 

p(X = x, Y = y|Z = z) = p(X = x|Z = z) · p(Y = y|Z = z)
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p(j,m, a,¬b,¬e) = p(j|m, a,¬b,¬e)p(m|a,¬b,¬e)p(a|¬b,¬e)p(b|¬e)p(e)
= p(j|a)p(m|a)p(a|¬b,¬e)p(b)p(e)
= 0.9 · 0.7 · 0.001 · 0.999 · 0.998
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Constructing a Bayesian Network 

Step One: Determine an ordering of the random variables 
   {X1, X2, …, Xn} 

Step Two: For each variable Xi, choose minimal set of nodes from 
{X1,…,Xi-1} required to specify the conditional distribution  

   p(Xi|Parents(Xi)) 
 

Step Three: Specify the conditional probability tables (CPTs): 
!  Interview experts 
!  Learn from data 

"  Learn discrete probabilities 
"  Specify a parametric formula, e.g. Gaussian distribution, and learn 

parameters, e.g. mean and variance, from data 
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Constructing a Bayesian Network 

(MaryCalls, JohnCalls, Alarm, Burglary, Earthquake) 

Constructing a Bayesian Network 

(MaryCalls, JohnCalls, Alarm, Burglary, Earthquake) 

140 Chapter 14. Probabilistic Reasoning

JohnCalls

MaryCalls

Alarm

Burglary

Earthquake

MaryCalls

Alarm

Earthquake

Burglary

JohnCalls

(a) (b)

Figure 14.3 FILES: figures/burglary-mess.eps (Tue Nov 3 16:22:29 2009). Network structure
depends on order of introduction. In each network, we have introduced nodes in top-to-bottom order.
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Bayesian Networks terminology 

X 

U1 U2 

Y1 

Z 

Ancestor 

Parent 

Descendent 

Non-descendent 

Independence assumptions encoded in 
the Bayesian Network 

X 

U1 U2 

Y1 

Z 

Ancestor 

Parent 

Descendent 

Non-descendent 

Local Markov Assumption: 
A node X is independent 
of its non-descendents 
given its parents 



10/1/13%

14%

Independence assumptions encoded in 
the Bayesian Network 

Markov Blanket: 

A node X is conditionally 
independent of all other nodes 
given its parents, children, and 
children’s parents 

X 

U1 U2 

Y1 

Z 

Ancestor 

Parent 

Descendent 

Non-descendent 

a

b

ab

ca

c

b

c

Linear

Converging Diverging

Three Types of Connections 

Cavity 

Toothache Catch 
GrassWet 

Sprinkler Rain 
Earthquake 

Alarm 

MaryCalls 
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Connection patterns and independence 

!  Linear connection: The two end variables are dependent on 
each other. The middle variable renders them independent. 

!  Converging connection: The two end variables are 
independent of each other. The middle variable renders them 
dependent. 

!  Divergent connection: The two end variables are dependent 
on each other. The middle variable renders them independent. 

 
Cavity 

Toothache Catch 
GrassWet 

Sprinkler Rain 
Earthquake 

Alarm 

MaryCalls 

Commonly used Bayesian Networks 

!  Naïve Bayes Classifier 
!  Commonly used for text classification (and medical diagnosis) 

!  C is the class (topic or label) of the document 
!  The X variables represent the words in the document 

 
 

 

C 

X1 X2 … Xn X3 X4 

Artificial intelligence branch computer 
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Commonly used Bayesian Networks 

!  Naïve Bayes Classifier 
!  What are the independence assumptions encoded in this BN? 
!  Given these independence assumptions, how does the joint 

distribution factor? 
!  What are the distributions that must be specified? 
 

 
 

C 

X1 X2 … Xn X3 X4 

Artificial intelligence branch computer 

Commonly used Bayesian Networks 

!  Hidden markov model 
! Used for time series, e.g. speech recognition 
! What are the independence assumptions? 

X1 X2 
… Xn X3 

Y1 Y1 Y1 Y1 
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Inference in Bayesian Networks 

!  Probabilistic inference refers to the task of computing some desired 
probability given other known probabilities (evidence) 

!  Exact Inference 
!  Enumeration 
!  Variable elimination 
 

!  Approximate Inference 
!  Direct sampling 
!  Rejection sampling 
!  Likelihood weighting 
!  MCMC 

Recall: Burglary network 
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Figure 14.2 FILES: figures/burglary2.eps (Tue Nov 3 16:22:29 2009). A typical Bayesian net-
work, showing both the topology and the conditional probability tables (CPTs). In the CPTs, the letters
B, E, A, J , and M stand for Burglary , Earthquake , Alarm , JohnCalls, and MaryCalls , respec-
tively.
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Inference by Enumeration 

!  Compute p(b|j,m) and p(-b|j,m) and then normalize 

!  May compute the same expression more than once 

Step One: select the entries 
in the table consistent with 
the evidence (this becomes 
our world) 
 

Step Two: sum over the H 
variables to get the joint 
distribution of the query 
and evidence variables 

Step Three: Normalize 

p(X = x, Y = y|Z = z) = p(X = x|Z = z) · p(Y = y|Z = z)

<
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= p(j|a)p(m|a)p(a|¬b,¬e)p(b)p(e)
= 0.9 · 0.7 · 0.001 · 0.999 · 0.998

p(b|j,m) /
X

e

X
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p(b, j,m, e, a)
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X

e

X
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p(b) · p(e) · p(j|a) · p(m|a) · p(a|b, e)

= p(b)
X

e

p(e)
X
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p(j|a) · p(m|a) · p(a|b, e)

5

Conditional and joint differ only by 
the normalizing constant 

Independencies read from BN 

Algebraic simplifications 

B E 

A 

J M 

Inference by Enumeration 

P(j|a)
.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a) P(j|a)

.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a)

P(b)
.001

P(e)
.002

P(   e)
.998

P(a|b,e)
.95 .06

P(   a|b,   e)
.05
P(   a|b,e)

.94
P(a|b,   e)
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Inference by Variable Elimination 

!  Carry out sums from right to left storing intermediate results to 
avoid recomputation 

!  Results are stored in factors (matrices) 
!  Two operations: pointwise multiplication and summation 

p(X = x, Y = y|Z = z) = p(X = x|Z = z) · p(Y = y|Z = z)

<
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p(X,Y ) / p(X|Y )
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p(j,m, a,¬b,¬e) = p(j|m, a,¬b,¬e)p(m|a,¬b,¬e)p(a|¬b,¬e)p(b|¬e)p(e)
= p(j|a)p(m|a)p(a|¬b,¬e)p(b)p(e)
= 0.9 · 0.7 · 0.001 · 0.999 · 0.998
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p(B|j,m) = ↵ p(B)
X

e

p(e)
X
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p(a|B, e) p(j|a) p(m|a)

= ↵ f1(B)
X

e

f2(e)
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f3(A,B,E) f4(A) f5(A)

= ↵ f1(B)
X

e

f2(e) f6(B,E)

= ↵ f1(B) f7(B)

5

Inference by Variable Elimination 

!  Point-wise multiplication of two factors 
 

!  Summing out a variable corresponds to adding 
submatrices 

A B f1(A,B) B C f2(B,C) A B C f3(A,B,C) 
T T .3 T T .2 T T T 
T F .7 T F .8 T T F 
F T .9 F T .6 T F T 
F F .1 F F .4 T F F 

F T T 
F T F 
F F T 
F F F 



10/1/13%

20%

Inference by Variable Elimination 

!  Every variable that is not an ancestor of a query 
variable or evidence variable is irrelevant 

 

!  Ordering of variables for summing out affects the 
time and space of VE 
! For polytrees (at most one path between any two 

nodes), VE is linear in the size of the network 
!  In general, time and space are exponential 

B E 

A 

J M 


