ADVERSARIAL SEARCH

Today

Reading

- AIMA Chapter 5.1-5.5, 5.7,5.8

Goals

- alpha-beta pruning
\square Finish real-time decisions
\square Stochastic games

Minimax: an optimal strategy

$\operatorname{MinimaX}(\mathrm{s})= \begin{cases}\operatorname{UTILITY}(s) & \text { if TERMINAL-TEST}(s) \\ \max _{a} \operatorname{MINIMAX}(\operatorname{ReSULT}(s, a)) & \text { if PLAYER }(s)=\operatorname{MAX} \\ \min _{a} \operatorname{MINIMAX}(\operatorname{RESULT}(s, a)) & \text { if } \operatorname{PLAYER}(s)=\operatorname{MIN}\end{cases}$

Minimax: An Optimal Strategy

function Minimax-Decision(state) returns an action
$v \leftarrow \operatorname{MAX}-\operatorname{VALUE}($ state $)$
return the action in SUCCESSORS(state) with value v
function MAX-VALUE(state) returns a utility value
if Terminal-Test(state) then return Utlity(state)
$v \leftarrow-\infty$
for a, s in Successors(state) do
$v \leftarrow \operatorname{Max}(v, \operatorname{Min}-\operatorname{VALUE}(s))$
return v
function Min-Value(state) returns a utility value
if Terminal-Test(state) then return Utlity(state)
$v \leftarrow \infty$
for a, s in Successors(state) do
$v \leftarrow \operatorname{Min}(v, \operatorname{Max}-\operatorname{Value}(s))$
return v

Minimax example

Minimax example

Minimax example

Minimax example

Minimax example

Minimax example

Minimax example

Complexity of Minimax

\square Minimax performs DFS of search tree
\square Time O(b $\left.{ }^{m}\right)$
\square Tic-tac-toe: ~5 legal moves, 9 moves/game

- $5^{9}=1,953,125$ states
\square Chess: ~ 35 legal moves, ~ 100 moves/game
- 35^{100} states to search

Common games produce enormous search trees

Alpha-Beta pruning

alpha is the best scenario MAX has found so far
\square MAX can always achieve a utility of alpha (and hopes for higher)
beta is the best scenario MIN has found so far
\square MIN can always achieve a utility of beta (and hopes for lower)

$$
[\alpha, \beta]
$$

Alpha-Beta Example

Do depth-first search until first leaf

Alpha-Beta Example

Alpha-Beta Example

MAX

Alpha-Beta Example

Alpha-Beta Example

Alpha-Beta Example

Alpha-Beta Example

Alpha-Beta Example

MAX

Effectiveness of Alpha-Beta pruning

Highly-dependent on the order in which the states are examined

Try to examine those states that are likely to be best

In practice, the running time for alpha-beta pruning is $O\left(b^{m / 2}\right)$ as opposed to $O\left(b^{m}\right)$
\square Effective branching factor is square root of b
\square Can search twice as deep as minimax

Real-time decision making

\square Alpha-beta pruning still has to search down to the leaf nodes (for part of the search tree)

Standard approach (Shannon, 1950):
\square apply a cutoff test (turn non-leaf nodes into leaves)
\square replace utility function by an evaluation function that estimates "desirability" of position

Claude Shannon

Real-time decision making

$\operatorname{MinimAX}(\mathrm{s})= \begin{cases}\operatorname{UTILITY}(s) & \text { if TERMINAL-TEST}(s) \\ \max _{a} \operatorname{MINIMAX}(\operatorname{RESULT}(s, a)) & \text { if } \operatorname{PLAYER}(s)=\operatorname{MAX} \\ \min _{a} \operatorname{MINIMAX}(\operatorname{RESULT}(s, a)) & \text { if } \operatorname{PLAYER}(s)=\operatorname{MIN}\end{cases}$
$\operatorname{H-MINIMAX}(\mathrm{s}, \mathrm{d})= \begin{cases}\operatorname{EVAL}(s) & \text { if } \operatorname{CUTOFF}-\operatorname{TEST}(s, d) \\ \max _{a} \mathrm{H}-\operatorname{MINIMAX}(\operatorname{RESULT}(s, a), \mathbf{d}+\mathbf{1}) & \text { if PLAYER}(s)=\text { MAX } \\ \min _{a} \operatorname{H}-\operatorname{MINIMAX}(\operatorname{RESULT}(s, a), \mathbf{d}+\mathbf{1}) & \text { if } \operatorname{PLAYER}(s)=\text { MIN }\end{cases}$

Evaluation function

Estimates utility of game from truncated position

- Order terminal states in same manner
\square Fast to compute
\square For non-terminal states, correlated with the truth

Weighted linear combination of features
\square independence assumption

$$
\operatorname{EVAL}(s)=w_{1} f_{1}(s)+\ldots+w_{n} f_{n}(s)=\sum_{i=1}^{n} w_{i} f_{i}(s)
$$

Heuristic difficulties

(a) White to move

(b) White to move

Cutoff tests - when to stop?

\square At a fixed depth
Iterative deepening
\square Report the result of the last IDS search that was fully completedHorizon effect
\square Pushing off the inevitable
Quiescence search
\square Stop at quiescent (quiet) positions
\square Focus on non-quiescent positions

Stochastic Games

Stochastic games

\square Stochastic games include an element of chance
\square e.g. dice, unpredictable or random opponents
Example 1-player and 2-player stochastic games
\square solitaire, minesweeper, backgammon, pacman

How do we find the optimal strategy in the presence of uncertainty?

Stochastic games

How do we find the optimal strategy in this case?
\square Change minimax tree to include chance nodes
probability of occurring

Compute average (expected) utility

- e.g. $1 / 2(20)+1 / 2(2)=11$

Stochastic games

How do we find the optimal strategy in this case?
\square Update minimax tree to include chance nodes

Compute average (expected) utility
-e.g. $1 / 2(20)+1 / 2(2)=11$

Stochastic games

\square 2-person stochastic game: MAX, MIN, chance nodes

Stochastic games

For a 2-person stochastic game: MAX, MIN, chance

Stochastic games

\square For a 2-person stochastic game: MAX, MIN, chance

Stochastic games

For a 2-person stochastic game: MAX, MIN, chance

Example: Backgammon

\square White rolls 6-5: (5-10, 5-11), (5-11,19-24), ...

ExpectiMinimax

Update minimax strategy to compute weighted average (expected value) at chance nodesGives the expected value of a position/move
$\operatorname{EXPECTIMINIMAX}(\mathrm{s})= \begin{cases}\operatorname{UTILITY}(s) & \text { if TERMINAL-TEST}(s) \\ \max _{a} \operatorname{EXPECTIMINIMAX}(\operatorname{RESULT}(s, a)) & \text { if PLAYER }(s)=\text { MAX } \\ \min _{a} \operatorname{EXPECTIMINIMAX}(\operatorname{RESULT}(s, a)) & \text { if PLAYER }(s)=\text { MIN } \\ \sum_{r} P(r) \cdot \operatorname{EXPECTIMINIMAX}(\operatorname{RESULT}(s, r)) & \text { if PLAYER }(s)=\operatorname{CHANCE}\end{cases}$
$\mathrm{O}\left(b^{m} n^{m}\right)$ where n is number of distinct outcomes

ExpectiMinimax in real-time

Recall, real-time games need to make fast decisions
For minimax, scale of the evaluation function doesn' \dagger matter

For expectiMinimax, the scale is important

Summary of adversarial games

Talked mostly about zero-sum games

- If I win then you lose

Minimax is optimal strategy but often too slow
\square Alpha-beta pruning can increase max depth by factor of 2
\square Implement evaluation function and cutoff-tests for early stop and guided search

Expectiminimax used for games with an element of chance/randomness

