ADVERSARIAL SEARCH

Today

\square Reading

- AIMA Chapter 5.1-5.5, 5.7,5.8
\square Goals
- Introduce adversarial games
- Minimax as an optimal strategy
\square Alpha-beta pruning
\square (Real-time decisions)

Adversarial Games

\square People like games!
\square Games are fun, engaging, and hard-to-solve
\square Games are amenable to study: precise, easy-torepresent state space

Game pieces found in a burial site in Southeast Turkey. Dated about 3000 BC

"Game of Twenty squares" discovered in a burial site in Ur. Dated about 2550-2400 BC

Backgammon is also among one of the oldest games still played today

Adversarial Games

Two-player games have been a focus of AI as long as computers have been around

Checkers

Solved: state space was completely mapped out!

Backgammon and Chess

Computers can compete at a championship level mappal

Computers are still
 at an amateur club-level

Adversarial Games

Humans and computers have different relative strengths in game play

```
    humans
```

good at evaluating the strength of a board
for a player

good at looking ahead in the game to find winning combinations of moves

How humans play games

An experiment (by deGroot) was performed in which chess positions were shown to novice and expert players.
experts could reconstruct these perfectly novice players did far worse...

Random chess positions (not legal ones) were then shown to the two groups
experts and novices did just as
badly at reconstructing them!

How computers play games

Terminology

\square deterministic vs. stochastic games
\square initial state, successor function, goal test,...
\square utility function: defines the final numeric value for a game that ends in terminal state s for player p
\square Chess: $+1,0,1 / 2$ for a win, loss, or draw
\square zero-sum game: equal and opposite utilities

- If I win, you lose.

Chess: $0+1,1+0,1 / 2+1 / 2$
\square policy: a function that maps from the set of states to the set of possible actions

Branching factor and depth

On average, there are fewer than 40 possible moves that a chess player can make from any board configuration...

Simplified representation for twoplayer games

Minimax: an optimal strategy

\square An optimal strategy is one that is at least as good as any other, no matter what the opponent does - If there's a way to force the win, it will \square Will only lose if there's no other option
\square Minimax is an optimal strategy assuming both players play optimally

Minimax: an optimal strategy

What action should MAX take?

Minimax: an optimal strategy

If I did this, then
he would do
that, but then I
would do that,
and then he
would do this...
$\operatorname{MINIMAX}(\mathrm{s})= \begin{cases}\operatorname{UTILITY}(s) & \text { if TERMINAL-TEST}(s) \\ \max _{a} \operatorname{MINIMAX}(\operatorname{RESULT}(s, a)) & \text { if PLAYER }(s)=\operatorname{MAX} \\ \min _{a} \operatorname{MINIMAX}(\operatorname{RESULT}(s, a)) & \text { if PLAYER }(s)=\operatorname{MIN}\end{cases}$

Minimax: An Optimal Strategy

function Minimax-Decision(state) returns an action
$v \leftarrow$ Max-Value(state)
return the action in SUCCESSORS(state) with value v
function MAX-VALUE(state) returns a utility value
if Terminal-Test(state) then return Utility (state)
$v \leftarrow-\infty$
for a, s in SUCCESSORS(state) do
$v \leftarrow \operatorname{Max}(v, \operatorname{Min}-\operatorname{Value}(s))$
return v
function Min-VALUE(state) returns a utility value
if Terminal-Test(state) then return Utility (state)
$v \leftarrow \infty$
for a, s in SUCCESSORS(state) do
$v \leftarrow \operatorname{Min}(v, \operatorname{Max}-\operatorname{Value}(s))$
return v

Minimax: Baby Nim

111/1

Take 1 or 2 at each turn
Goal: take the last match

Minimax: Baby Nim

Take 1 or 2 at each turn Goal: take the last match

Minimax

Properties of Minimax

\square Minimax performs depth-first exploration of game tree.
\square Recall time complexity for DFS is $\mathrm{O}\left(\mathrm{b}^{m}\right)$

For chess, $b \approx 35, d \approx 100$ for "reasonable" games

- exact solution completely infeasible

How can we find the exact solution faster?

Alpha-Beta Pruning

\square Alpha-beta pruning: eliminate parts of game tree that don't affect the final result
\square Consider a node n

- If a player has a better choice m (at a parent or further up), then n will never be reached
\square Once we know enough about n by looking at some successors we can prune it.

Alpha-Beta Example

Do depth-first search until first leaf

Alpha-Beta Example

Alpha-Beta Example

Alpha-Beta Example

Alpha-Beta Example

Alpha-Beta Example

Alpha-Beta Example

Alpha-Beta Example

MAX

Alpha-Beta pruning

function ALPHA-BETA-SEARCH(state) returns an action
inputs: state, current state in game
$v \leftarrow \operatorname{MAX}-\operatorname{VALUE}($ state $,-\infty,+\infty)$
return the action in SUCCESSORS(state) with value v
function MAX- $\operatorname{VALUE}($ state $, \alpha, \beta)$ returns a utility value
inputs: state, current state in game
α, the value of the best alternative for MAX along the path to state
β, the value of the best alternative for MIN along the path to state
if Terminal-Test(state) then return Utility(state)
$v \leftarrow-\infty$
for a, s in SUCCESSORS(state) do
$v \leftarrow \operatorname{MAX}(\mathrm{v}, \operatorname{MiN}-\operatorname{VALUE}(s, \alpha, \beta))$
if $v \geq \beta$ then return v
$\alpha \leftarrow \operatorname{MAX}(\alpha, \mathrm{v})$
return v
function MIN-VALUE(state, α, β) returns a utility value
inputs: state, current state in game
α, the value of the best alternative for MAX along the path to state
β, the value of the best alternative for MIN along the path to state
if Terminal-Test(state) then return Utility(state)
$v \leftarrow+\infty$
for a, s in SUCCESSORS(state) do
$v \leftarrow \operatorname{Min}(\mathrm{v}, \operatorname{MAX}-\operatorname{VALUE}(s, \alpha, \beta))$
if $v \leq \alpha$ then return v
$\beta \leftarrow \operatorname{Min}(\beta, \mathrm{v})$
return v

Why is it called alpha-beta?

$\square \alpha$ is the value of the best (i.e., highest-value) choice found so far at any choice point along the path for MAX

If v is worse than α, MAX will avoid it \square prune that branch
 MIN

Properties of $\alpha-\beta$

Pruning does not affect final resultHowever, effectiveness of pruning affected by order in which we examine successors

What do you do if you don't get to the bottom of the tree on time?

