
1/29/14!

1!

+!

Lecture 5: ArrayList
implementation &
Complexity

+!
Today

n Reading
n  JS Ch. 3 (Vectors) and Ch. 4 (Generics)

n Objectives
n  Implementation of ArrayList
n  Introduction to Big-O notation (Complexity)

n Announcements
n 4 guest lectures in February

1/29/14!

2!

+!
Back to ArrayList

n Our first example of how to analyze the complexity
of a data structure

n See ArrayIndexList<E>
n  Similar to ArrayList

n  Instance variables:

n  elts: array instance variable,

n  eltsFilled: number of slots filled.

n Some operations very cheap:
n  size, isEmpty, get, set take constant time (no search)

n Others more expensive

+!
Adding elements

n Easy if there is space:
n  At end, just add it

n  If before end, move all elements at i and beyond to right
before inserting

n  Delete similar

n What should we do if there is no space?

n How expensive is this solution?

1/29/14!

3!

+!
Complexity of Operations

n Count number of compares and/or moves to
accomplish operation.

n Rather than keeping an exact count of operations,
use order of magnitude count of complexity.

n  Ignore differences which are constant
n  n and n/2 have the same order of magnitude.

n  2 n2 and 1000 n2 have the same order of magnitude

+!
Order of Magnitude (on board)

1/29/14!

4!

+!
Complexity

84 Design Fundamentals

2 2

log()nnn!

3

sqrt()

1

0
0 1 2 3 4 5

4

5

n

n n

nlog()

2
n

Figure 5.2 Near-origin details of common curves. Compare with Figure 5.3.

2

2

n!

log()nn

sqrt()n
log()n

n

60

40

20

80

100

0
0 20 40 60 80 100

n

n

Figure 5.3 Long-range trends of common curves. Compare with Figure 5.2.

