
5/4/14	

1	

+

Lecture 41: Graphs/
Inheritance

+
Today

n Reading
n  JS Ch. 16

n  Weiss Ch. 6

n Objectives
n  Prim’s algorithm for minimum spanning trees

n  Inheritance in C++

5/4/14	

2	

+
Minimum Spanning Trees

n  G’ = (V’, E’) is a subgraph of G=(V,E) if V’ is a subset of V and
E’ is a subset of E

n  A spanning tree is a subgraph of G that is a tree and connects
all of the vertices together

n  A minimum spanning tree is a minimum weight spanning tree
n  Weight is the sum of the weights of the edges in the MST

+
A Spanning Tree

1 2 3

4 5 6

7

1 2

4
6

4
5

6

3 8

4

7 3

weight = 32

5/4/14	

3	

+
The Minimum Spanning Tree

1 2 3

4 5 6

7

1 2

4
6

4
5

6

3 8

4

7 3

weight = 17

+
Prim’s Algorithm

n  Algorithm for finding a minimum spanning tree

n  Runs on a connected, weighted (possibly negative),
undirected graph

n  Greedy algorithm – makes the greedy choice each time

n  Basic algorithm:
n  Initialize tree with randomly chosen vertex

n  Find minimum weight edge that connects tree to vertices not yet
in tree

n  Add this edge/vertex to the tree

5/4/14	

4	

+
Prim’s Algorithm

n  Data structures:

n  For each vertex v, key[v] is least-cost edge (found so far)
joining v to tree

n  For each vertex v, parent[v] is vertex u in edge(u,v) that
added v to the tree

n  Q is priority queue ordered by least-cost edges (i.e. by key)

+
Prim’s Algorithm

prim(g) {!
 // initialization!
 pick start node r!
 foreach(u in V-{r}) key[u] = ∞!
 key[r] = 0; parent[r] = null;!
 add all vertices to Q (by key)!
!
 // each iteration adds one node to MST!
 while(!Q.empty()){ !
 u = min node from Q!
 foreach v adjacent to u!
 if v in Q and edge_weight(u,v) < key[v]!
 parent[v] = u; key[v] = edge_weight(u,v)!
 adjust priority of v in Q!
 }!
 return parent!
}!

5/4/14	

5	

+
Inheritance in C++

n  Finish up our discussion of C++ with inheritance

n  Default parameters
n  Specifies a value to use if input argument is not given

n  Syntax of declaring a subclass

class Student : public Person!

n  Public inheritance implements an “isA” relationship

n  Constructor for subclass must call constructor for base class

+
The virtual keyword

n  Solution: determine at runtime (not compile time) which
function to call

n  This is known as dynamic dispatching

n  The virtual keyword signals that the function uses dynamic
dispatching

n  Allows this function to be overwritten in subclasses

n  If don’t use virtual, the function called is based on
compile-time type not runtime type

5/4/14	

6	

+
Slicing

n  Slicing – when a derived class is copied into base class, only
the instance variables from the base class are preserved

n  Slicing occurs whenever objects are copied
n  For example, call-by-value

222

Sally Jones

4.0

222

Sally Jones

+
Slicing

n  Assignment of subclass object to base class variable results
in slicing – converts to base class!

n  Assignment of pointers works as expected!

n  Bottom line: if want subtyping, use pointers or call by
reference. Copying destroys subtyping

n  In particular, if you want a vector of Person or subclass,

vector<Person*> people;!

5/4/14	

7	

+
Casting in C++

n  Type casts in C++ always succeed!

n  Downcasting on pointers always succeeds!

n  To get checked conversions, use dynamic_cast!
n  Returns NULL if the cast is incorrect

n  dynamic_cast does a compile time and runtime check to make
sure the cast can work

n  requires that the object you’re casting has polymorphic type, i.e.
has at least one virtual method

+
Writing Java classes in C++

n  Declare every method as virtual

n  Only allocate objects with new

n  Access all objects by pointer

n  Use collections of pointers (not objects)

n  Must worry about manual garbage collection!

