
5/1/14	

1	

+

Lecture 40: Graphs

+
Today

n Reading
n JS Chapter 16

n Objectives
n Graph algorithm running times
n Minimum Spanning Trees

n Announcements
n Final exam study guide posted on Piazza
n Apply to be a mentor next year!

5/1/14	

2	

+
Breadth-first Search

1 enqueue start node!
2 while(!q.empty()) {!
3 dequeue node!
4 if(node not visited) {!
5 mark as visited!
6 ! for(adjacent nodes) {!
7 ! if(adjacent node not visited)!
8 ! enqueue adjacent node!
9 !} ! !!
10 }!
11 }!

What’s the running time
of this algorithm in terms

of |V| and |E|?

+
Dijkstra’s Algorithm

while (!frontier.is_empty()) {

int v = frontier.top_serialnumber();

int p = frontier.top_priority();

frontier.pop();

for (the neighbors (n,w) of v)

if (n == parents[v])

; // do nothing

else if (n is not in the frontier and has not been visited) {

parents[n] = v;

frontier.push(n, p + w);

}else if (p + w < frontier.get_priority(n)) {

parents[n] = v;

frontier.reduce_priority(n, p + w);

}

} // end while

What’s the running time
of this algorithm in terms

of |V| and |E|?

5/1/14	

3	

+
Minimum Spanning Trees

n  G’ = (V’, E’) is a subgraph of G=(V,E) if V’ is a subset of V and
E’ is a subset of E

n  A spanning tree is a subgraph of G that is a tree and connects
all of the vertices together

n  A minimum spanning tree is a minimum weight spanning tree
n  Weight is the sum of the weights of the edges in the MST

+
Minimum Spanning Tree

1 2 3

4 5 6

7

1 2

4
6

4
5

6

3 8

4

7 3

weight = 32

5/1/14	

4	

+
Minimum Spanning Tree

1 2 3

4 5 6

7

1 2

4
6

4
5

6

3 8

4

7 3

weight = 17

+
Prim’s Algorithm

n  Algorithm for finding a minimum spanning tree

n  Runs on a connected, weighted (possibly negative),
undirected graph

n  Greedy algorithm – makes the greedy choice each time

n  Basic algorithm:
n  Initialize tree with randomly chosen vertex

n  Find minimum weight edge that connects tree to vertices not yet
in tree

n  Add this edge/vertex to the tree

5/1/14	

5	

+
Prim’s Algorithm

n  Data structures:

n  For each vertex v, key[v] is least-cost edge (found so far)
joining v to tree

n  For each vertex v, parent[v] is vertex u in edge(u,v) that
added v to the tree

n  Q is priority queue ordered by least-cost edges (i.e. by key)

+
Prim’s Algorithm

prim(g) {!
 pick start node r!
 foreach(u in V-{r}) key[u] = ∞!
 key[r] = 0; parent[r] = null;!
 add all vertices to Q (by key)!
 while(!Q.empty()) !
 u = min node from Q!
 foreach v adjacent to u!
 if v in Q and edge_weight(u,v) < key[v]!
 parent[v] = u; key[v] = edge_weight(u,v)!
 adjust priority of v in Q!
 return parent!
}!

