
4/30/14	

1	

+

Lecture 39: Graphs

+
Today

n  Reading
n  Correction: JS Chapter 16

n  Not “Weiss Chapter 16”

n  Objectives
n  Breadth-first search

n  Depth-first search

n  Dijkstra’s Algorithm

4/30/14	

2	

+
Recap: Adjacency Matrix

n  Store a |V|-by-|V| boolean matrix (two-dimensional array)
n  Entry (i,j) is 1 if there is an edge from vertex i to vertex j

n  Symmetric if undirected

n  Space? Time to lookup edge?

A B C D

A 0 1 1 1

B 1 0 0 1

C 1 0 0 0

D 1 1 0 0

A B

C D

+
Recap: Adjacency List

n  Store a list of linked lists
n  Use map from vertex labels to lists

n  Space? Time to lookup edge?

A B

B A

C

D A

A

B

A B

C D

C D

D

4/30/14	

3	

+
Breadth-first Search

n  Equivalent to a level-order traversal of a tree
n  Search all nodes 1 away, 2 away, 3 away, etc

n  Uses a queue data structure

n  Basic algorithm:
n  Enqueue the start node

n  While the queue is not empty:

n  Dequeue a node

n  Check if node previously visited

n  If not, mark as visited and enqueue all children

A B

C D

+
Breadth-first Search

n  If graph has multiple connected components
n  Wrap BFS inside a for-loop that iterates through all nodes

n  See bfs_dfs_demo.cpp
n  Uses a typedef (allows you to rename a type)

n  Better to use map<string, vector<string>> instead of pair!

A B

C D

E F

4/30/14	

4	

+
Depth-first search

n  Equivalent to a pre-order traversal of a tree
n  except may get stuck in cycles

n  Can use the same algorithm as BFS
n  Either use a stack or use recursion

A B

C D

E F

+
Detecting Cycles

n  Can use depth-first search to see if we loop back

n  How can we detect a loop?
n  A node in our adjacency list has already been visited but it is not

the node that added us (we call this node our parent)

n  Works for an undirected graph

4/30/14	

5	

+
Single Source Shortest Paths

n  Starting at node s, find the “shortest” path to all other nodes

n  If edges have no weight then can use BFS
n  “Shortest path” is defined to be the path with fewest edges

n  If edges have (non-negative) weights, use Dijkstra’s Algorithm
n  Dijkstra’s Algorithm is BFS with a priority queue

n  The priority is the distance from the start node to current node

n  Keep track of parent node (i.e. preceding node in the path)

+
Single Source Shortest Path

*/

map<int,int> shortest paths(int start,

const map<int,list<pair<int,int> > > & graph) {

map<int,int> parents;

priorityqueue62 frontier;

parents[start]=start;

frontier.push(start, 0);

while (!frontier.is_empty()) {

int v = frontier.top_serialnumber();

int p = frontier.top_priority();

frontier.pop();

for (the neighbors (n,w) of v)

if (n == parents[v])

; // do nothing

else if (n is not in the frontier and has not been visited) {

parents[n] = v;

frontier.push(n, p + w);

}else if (p + w < frontier.get_priority(n)) {

parents[n] = v;

frontier.reduce_priority(n, p + w);

}

} // end while

return parents;

}

priority queue to keep track of
nodes to be visited

remove node with lowest priority, i.e.
“closest” node

for each neighboring/
adjacent node

This is the node that put us on the
queue! Nothing to do

First time we’ve seen this node

Found a shorter path to this node

4/30/14	

6	

+
Single Source Shortest Path

SF

Denver Chicago

Williams

Boston

LA

15

20

12

13

42

7

11

+
This Week’s Assignment

n  Write three graph algorithms:
n  Use DFS to find all connected components
n  Use DFS to return a cycle if one exists
n  Use Dijkstra’s algorithm to find single source shortest paths

n  The graph is stored as an adjacency list:
!

!// maps node label to adjacency list!
!map<int, list<int>>!

n  Create a graph from Netflix data. Experiment with different
ways of defining “adjacency”

n  Run connected component function on Netflix graph

