
4/27/14	

1	

+

Lecture 38: Graphs

+
Today

n Reading
n Weiss Chapter 16

n Objectives
n Graphs

4/27/14	

2	

+
Announcements

n  No more quizzes!

n  Assignment 11/12 is due this Tuesday by 11:59pm

n  Assignment 13 is already posted!
n  The final assignment

n  Can work in pairs

n  Due Monday May 5th

n  Talk about it more on Wednesday

+
Graphs in Real Life

n  Transportation networks
n  Airline flight paths

n  Roads, interstates, etc. (Google maps)

n  Finding shortest route, cheapest route

n  Find route that minimizes fuel costs

n  Communication networks
n  Electrical grid, phone networks, computer networks

n  Minimize cost for building infrastructure

n  Minimize losses, route packets faster

4/27/14	

3	

+
More Graphs

n  Social networks
n  People and relationships (e.g. Facebook)

n  Does this person know this person?

n  Can this person introduce me to that person (e.g. job
opportunities)?

http://griffsgraphs.com/2012/07/02/a-facebook-network/

+
Definitions

n  A graph is a generalization of a tree

n  A graph G is a set (V,E)
n  V is a finite, non-empty, set of vertices

n  E is the set of edges that connect pairs of vertices

n  Called “vertices” or “nodes”

4/27/14	

4	

+
Example: Undirected Graph

n  G = (V,E) where

n  V = {A, B, C, D}

n  E = {(A, C), (A,B), (A,D), (B,D)}

A B

C D

+
Example: Directed Graph

n  G = (V,E) where

n  V = {1, 2, 3, 4}

n  E = {(1,2), (2,1), (3,1), (4,3), (4,4), (3,2)}

1 2

3 4

4/27/14	

5	

+
Definitions

n  Path - a sequence of connected vertices
n  A simple path – a path where all vertices occur only once

n  Path length - the number of edges in the path

n  A cycle - a path of length ≥ 1 that begins and ends at the
same vertex

n  Simple cycle – a simple path that begins and ends at the
same vertex

A B

C D

1 2

3 4

+
Definitions

n  self loop – A cycle consisting of one edge and one vertex

n  incident – Edge (x,y) is incident on vertex x and y

n  adjacent – Vertices x and y are adjacent if they are connected by
an edge (x,y)

n  degree – number of incident edges for a vertex

n  simple graph – a graph with no self loops

n  acyclic graph – a graph with no cycles

1 2

3 4

4/27/14	

6	

+
Connected Components

n  (undirected) connected graph– Every pair of vertices is
connected by a path

n  (directed) weakly connected – A directed graph that would be
connected if all its directed edges were replaced with undirected

n  (directed) strongly connected –Every pair (u,v) there is a path
from u to v and from v to u

connected weakly connected

+
Adjacency Matrix

n  Store a |V|-by-|V| boolean matrix (two-dimensional array)
n  Entry (i,j) is 1 if there is an edge from vertex i to vertex j

n  Symmetric if undirected

n  Space? Time to lookup edge?

A B C D

A 0 1 1 !

B 1 0 0 1

C 1 0 0 0

D 1 1 0 0

A B

C D

4/27/14	

7	

+
Adjacency List

n  Store a list of linked lists
n  Use map from vertex labels to lists

n  Space? Time to lookup edge?

A B

B A

C

D A

A

B

A B

C D

C D

D

+
Breadth-first Search

n  Equivalent to a level-order traversal of a tree
n  Search all nodes 1 away, 2 away, 3 away, etc

n  Uses a queue data structure

n  Basic algorithm:
n  Enqueue the start node

n  While the queue is not empty:

n  Dequeue a node

n  Check if node previously visited

n  If not, mark as visited and enqueue all children

A B

C D

4/27/14	

8	

+
Breadth-first Search

n  If graph has multiple connected components
n  Wrap BFS inside a for-loop that iterates through all nodes

n  See bfs_dfs_demo.cpp
n  Uses a typedef (allows you to rename a type)

n  Better to use map<string, vector<string>> instead of pair!

A B

C D

E F

+
Depth-first search

n  Equivalent to a pre-order traversal of a tree
n  except may get stuck in cycles

n  Can use the same algorithm as BFS
n  Either use a stack or use recursion

A B

C D

E F

4/27/14	

9	

+
Detecting Cycles

n  Can use depth-first search to see if we loop back

n  How can we detect a loop?
n  A node in our adjacency list has already been visited but it is not

the node that added us (we call this node our parent)

n  Works for an undirected graph

