

```
* Today
    Reading
        -Weiss Chapter 16
    ■Objectives
    -Graphs
```


$+$
 Announcements

- No more quizzes!
- Assignment ll/l2 is due this Tuesday by ll:59pm
- Assignment 13 is already posted!
- The final assignment
- Can work in pairs
- Due Monday May $5^{\text {th }}$
- Talk about it more on Wednesday

$+$

Graphs in Real Life

- Transportation networks
- Airline flight paths
- Roads, interstates, etc. (Google maps)
- Finding shortest route, cheapest route
- Find route that minimizes fuel costs
- Communication networks

- Electrical grid, phone networks, computer networks
- Minimize cost for building infrastructure
- Minimize losses, route packets faster

$+$
 More Graphs

- Social networks
- People and relationships (e.g. Facebook)
- Does this person know this person?
- Can this person introduce me to that person (e.g. job opportunities)?

$+$
 Definitions

- A graph is a generalization of a tree
- A graph G is a set (V,E)
- V is a finite, non-empty, set of vertices
- E is the set of edges that connect pairs of vertices
- Called "vertices" or "nodes"

$+$
 Example: Undirected Graph

- $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ where
- $\mathrm{V}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
- $\mathrm{E}=\{(\mathrm{A}, \mathrm{C}),(\mathrm{A}, \mathrm{B}),(\mathrm{A}, \mathrm{D}),(\mathrm{B}, \mathrm{D})\}$

${ }^{+}$Example: Directed Graph
- $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ where
- $\mathrm{V}=\{1,2,3,4\}$
- $\mathrm{E}=\{(1,2),(2,1),(3,1),(4,3),(4,4),(3,2)\}$

$+$
 Definitions

- Path - a sequence of connected vertices
- A simple path - a path where all vertices occur only once
- Path length - the number of edges in the path
- A cycle - a path of length ≥ 1 that begins and ends at the same vertex
- Simple cycle - a simple path that begins and ends at the same vertex

$+$
 Definitions

- self loop - A cycle consisting of one edge and one vertex
- incident - Edge (x, y) is incident on vertex x and y
- adjacent - Vertices x and y are adjacent if they are connected by an edge (x, y)
- degree - number of incident edges for a vertex
- simple graph - a graph with no self loops
- acyclic graph - a graph with no cycles

$+$
 Connected Components

weakly connected

- (undirected) connected graph- Every pair of vertices is connected by a path
- (directed) weakly connected - A directed graph that would be connected if all its directed edges were replaced with undirected
- (directed) strongly connected -Every pair (u,v) there is a path from u to v and from v to u

$+$
 Adjacency Matrix

Store a |V|-by-|V| boolean matrix (two-dimensional array)

- Entry (i, j) is l if there is an edge from vertex i to vertex j
- Symmetric if undirected
- Space? Time to lookup edge?

	A	B	C	D
A	0	1	1	$!$
B	1	0	0	1
C	1	0	0	0
D	1	1	0	0

$+$
 Adjacency List

Store a list of linked lists

- Use map from vertex labels to lists
- Space? Time to lookup edge?

$+$
 Breadth-first Search

Equivalent to a level-order traversal of a tree

- Search all nodes l away, 2 away, 3 away, etc
- Uses a queue data structure
- Basic algorithm:
- Enqueue the start node
- While the queue is not empty:
- Dequeue a node

- Check if node previously visited
- If not, mark as visited and enqueue all children

$+$
 Breadth-first Search

- If graph has multiple connected components
- Wrap BFS inside a for-loop that iterates through all nodes
- See bfs_dfs_demo.cpp
- Uses a typedef (allows you to rename a type)
- Better to use map<string, vector<string>> instead of pair

$+$
 Depth-first search

- Equivalent to a pre-order traversal of a tree
- except may get stuck in cycles
- Can use the same algorithm as BFS
- Either use a stack or use recursion

$+$ Detecting Cycles

■ Can use depth-first search to see if we loop back

- How can we detect a loop?
- A node in our adjacency list has already been visited but it is not the node that added us (we call this node our parent)
- Works for an undirected graph

