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Lecture 38: Graphs 

+
Today 

n Reading 
n Weiss Chapter 16 
 

n Objectives 
n Graphs 
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+
Announcements 

n  No more quizzes! 

n  Assignment 11/12 is due this Tuesday by 11:59pm 

n  Assignment 13 is already posted! 
n  The final assignment 

n  Can work in pairs 

n  Due Monday May 5th 

n  Talk about it more on Wednesday 

+
Graphs in Real Life 

n  Transportation networks 
n  Airline flight paths 

n  Roads, interstates, etc. (Google maps)  

n  Finding shortest route, cheapest route 

n  Find route that minimizes fuel costs 

n  Communication networks 
n  Electrical grid, phone networks, computer networks 

n  Minimize cost for building infrastructure 

n  Minimize losses, route packets faster 
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More Graphs 

n  Social networks 
n  People and relationships (e.g. Facebook) 

n  Does this person know this person? 

n  Can this person introduce me to that person (e.g. job 
opportunities)? 

http://griffsgraphs.com/2012/07/02/a-facebook-network/ 

+
Definitions 

n  A graph is a generalization of a tree 

n  A graph G is a set (V,E)  
n  V is a finite, non-empty, set of vertices 

n  E is the set of edges  that connect pairs of vertices 

n  Called “vertices” or “nodes” 
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Example: Undirected Graph 

n  G = (V,E) where 

n  V = {A, B, C, D} 

n  E = {(A, C), (A,B), (A,D), (B,D)} 

A B 

C D 

+
Example: Directed Graph 

n  G = (V,E) where 

n  V = {1, 2, 3, 4} 

n  E = {(1,2), (2,1), (3,1), (4,3), (4,4), (3,2)} 

1 2 

3 4 
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+
Definitions 

n  Path - a sequence of connected vertices 
n  A simple path – a path where all vertices occur only once 

n  Path length - the number of edges in the path 

n  A cycle - a path of length ≥ 1 that begins and ends at the 
same vertex 

n  Simple cycle – a simple path that begins and ends at the 
same vertex 

A B 

C D

1 2 

3 4 

+
Definitions 

n  self loop – A cycle consisting of one edge and one vertex 

n  incident – Edge (x,y) is incident on vertex x and y 

n  adjacent – Vertices x and y are adjacent if they are connected by 
an edge (x,y) 

n  degree – number of incident edges for a vertex 

n  simple graph – a graph with no self loops 

n  acyclic graph – a graph with no cycles 

1 2 

3 4 
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+
Connected Components 

n  (undirected) connected graph– Every pair of vertices is 
connected by a path 

n  (directed) weakly connected – A directed graph that would be 
connected if all its directed edges were replaced with undirected 

n  (directed) strongly connected –Every pair (u,v) there is a path 
from u to v and from v to u 

connected weakly connected 

+
Adjacency Matrix 

n  Store a |V|-by-|V| boolean matrix (two-dimensional array) 
n  Entry (i,j) is 1 if there is an edge from vertex i to vertex j 

n  Symmetric if undirected 

n  Space? Time to lookup edge? 

A B C D 

A 0 1 1 ! 

B 1 0 0 1 

C 1 0 0 0 

D 1 1 0 0 

A B 

C D
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+
Adjacency List 

n  Store a list of linked lists 
n  Use map from vertex labels to lists 

n  Space? Time to lookup edge? 

A B 

B A 

C 

D A 

A 

B 

A B 

C D 

C D 

D 

+
Breadth-first Search 

n  Equivalent to a level-order traversal of a tree 
n  Search all nodes 1 away, 2 away, 3 away, etc 

n  Uses a queue data structure 

n  Basic algorithm: 
n  Enqueue the start node 

n  While the queue is not empty: 

n  Dequeue a node 

n  Check if node previously visited 

n  If not, mark as visited and enqueue all children 

A B 

C D
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+
Breadth-first Search 

n  If graph has multiple connected components 
n  Wrap BFS inside a for-loop that iterates through all nodes 

n  See bfs_dfs_demo.cpp 
n  Uses a typedef  (allows you to rename a type) 

n  Better to use map<string, vector<string>> instead of pair!

A B 

C D

E F 

+
Depth-first search 

n  Equivalent to a pre-order traversal of a tree  
n  except may get stuck in cycles 

n  Can use the same algorithm as BFS 
n  Either use a stack or use recursion 

 

A B 

C D

E F 
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+
Detecting Cycles 

n  Can use depth-first search to see if we loop back 

n  How can we detect a loop? 
n  A node in our adjacency list has already been visited but it is not 

the node that added us (we call this node our parent) 

n  Works for an undirected graph 


