
4/24/14	

1	

+

Lecture 37: More C++

+
Today

n Reading
n  Bailey Chapter 16 (Graphs)

n Objectives
n  Lessons from lab

n  Recap primitive arrays

n  Iterators

n  (Graph algorithms)

4/24/14	

2	

+
Lessons from Lab

n  Great job to Hong and Yubai for tracking down all 78 calls to
the copy constructor!
n  The first 42 happen in the for-loop

n  The remaining 36 happen in the while loop

n  Calling rest() invokes the copy constructor. Why?!

n  It is possible to call delete on a pointer and yet still be able
to access the data the pointer points to!

n  The delete function first calls the destructor of the memory
being freed

n  Care is needed when converting from objects to pointers

+
Copy Constructor

n  Constructs a new object from an existing object

n  Examples of when the copy constructor is called:
n  IntCell copy = original;!

n  IntCell copy(original);!

n  a formal parameter of a call-by-value function!

n  an object returned by value!

n  It would not be called in this instance:

 IntCell copy;!

!copy = original;!
Remember this slide

from Lecture 33?!

4/24/14	

3	

+
Recap: Primitive arrays in C++

n  To declare an array:

int arr[3]; // notice where the brackets go

n  Compiler computes how many bytes needed for array

n  The name of the array is a constant pointer to the first element of
the array

n  Correction
n  Correct syntax: arr + i

n  Incorrect syntax: arr+4*i

+
Recap: Implications

n  Cannot assign to an array

n  Saying array2 == array1 tests memory equality

n  An array (i.e. the pointer to the first element) is passed by
value.
n  The overall effect, however, is that the array itself is passed by

reference

n  Changes to the formal parameters show up in the input arguments

int array1[3];!
int array2[3];!
array2 = array1;!

4/24/14	

4	

+
Dynamically allocated arrays

n  Use the new[] operator!
n  Just like the new operator but for arrays

n  creates an array of objects on the heap

n  There is a corresponding delete[] operator

void my_function() {!
!int SIZE = 3;!
!int array1[SIZE]; ! ! ! !// allocated on the stack!
!int *array2 = new int[SIZE]; !// allocated on the heap!

}!

After my_function returns, what memory is freed and what is not?

+
Iterators

n  In Java, an iterator is a class that allows you to iterate over the
elements of a collection
n  Implements the Iterator interface

n  What are the methods specified in the Iterator interface?

n  In C++, every class has its own iterator type

vector<int>::iterator !// iterator for a vector!

vector<int>::const_iterator // can’t modify vector!

map<int,int>::iterator // iterator for a map!

4/24/14	

5	

+
Iterators

n  Iterators act like pointers to values (but they’re not really
pointers)

 vector<int> vec;!
vec.push_back(0);!
vec.push_back(1);!
!
// itr is an iterator over vec!
vector<int>::iterator itr = vec.begin();!
!
// use itr in a for-loop to loop over vec!
for(; itr != vec.end(); ++itr) {!

!cout << *itr << endl;!
}!

