
4/22/14	

1	

+

Lecture 36: More C++

+
Today

n Reading
n  Weiss Ch. 11.1-11.2, 11.5-11.6 (Primitive arrays)

n Objectives
n  Primitive arrays in C++

n  Iterators in C++

4/22/14	

2	

+
Recap: Exceptions

n  Use try-catch block just like Java

n  In C++, you can throw a variable of any type!

n  The C++ standard library only throws types derived from the
exception class

n  Throw lists are deprecated as of C++11

n  File I/O
n  Call the exceptions() member function on a file to tell compiler “if

these bits are set, alert me by throwing an exception”

+
Arrays in C++

n  Prefer vector over using a primitive array

n  Prefer string over using an array of characters

n  Still, it’s useful to understand primitive arrays in C++

4/22/14	

3	

+
Declaring an array

n  Declare the type and size of the array

int arr[3]; // notice where the brackets go

n  Compiler allocates enough memory
n  The size of the type (in bytes) times the size of the array

 4 bytes per integer * 3 integers = 12 bytes allocated

n  Can use the sizeof() function to get the size of a type in bytes

+
Behind the scenes

n  The name of an array is a constant pointer to the beginning of
the allocated memory for that array

n  The pointer arr is always guaranteed to equal &arr[0]!

int main() {!
!int SIZE = 3;!
!int arr[SIZE];!
!return 0;!

}!

4/22/14	

4	

+
Pointer Arithmetic

n  You can perform addition on a pointer!

n  What is the value of ptr+1?
n  If ptr is an integer pointer, then adds 4 bytes to ptr

n  If ptr is a char pointer, then adds 1 byte to ptr

n  Thus, arr[i] is equivalent to arr + 4*i

n  Explains why arrays start with 0 instead of 1 in C-based
languages!

+
Implications

n  The following is illegal in C++. Why?

n  Saying array2 == array1 tests memory equality

n  What happens when I pass an array as an input argument?

int array1[3];!
int array2[3];!
array2 = array1;!

int main() {!
!int arr[5];!
!my_function(arr);!
!return 0;!

}!

my_function(int array[]) {!
!// do something!

}!

4/22/14	

5	

+
Other differences

n  There is no length instance variable associated with array

 arr.length; // doesn’t work in C++

n  Must keep track of the length of the array yourself

n  No bounds checking in C++
n  Accessing beyond bounds of the array may result in segmentation

fault…or may not

+
Dynamically allocated arrays

n  Use the new[] operator!
n  Just like the new operator but for arrays

n  creates an array of objects on the heap

n  There is a corresponding delete[] operator

void my_function() {!
!int SIZE = 3;!
!int array1[SIZE]; ! ! ! !// allocated on the stack!
!int *array2 = new int[SIZE]; !// allocated on the heap!

}!

After my_function returns, what memory is freed and what is not?

4/22/14	

6	

+
Iterators

n  In Java, an iterator is a class that allows you to iterate over the
elements of a collection
n  Implements the Iterator interface

n  What are the methods specified in the Iterator interface?

n  In C++, every class has its own iterator type

vector<int>::iterator !// iterator for a vector!

vector<int>::const_iterator // can’t modify vector!

map<int,int>::iterator // iterator for a map!

+
Iterators

n  Iterators act like pointers to values but they’re not really
pointers

 vector<int> vec;!
// add some integers to vec!
!
// itr is an iterator over vec!
vector<int>::iterator itr = vec.begin();!
!
// use itr in a for-loop to loop over vec!
for(; itr != vec.end(); ++itr) {!

!cout << *itr << endl;!
}!

