
4/20/14	
  

1	
  

+

Lecture 35: More C++ 

+
Today 

n Reading 
n Weiss Ch. 8.1-8.3 
 

n Objectives 
n Exception handling in C++ 



4/20/14	
  

2	
  

+
Access Modifiers in C++ 

n  In Java: public, protected, private, and “default” 

n  In C++: public, private, and friend 

n  Friends are allowed access to the private section of class 

+
Access Modifiers in C++ 

class Node{!
!

!private:!
! !int element;!
! !Node *next;!

!
! !// the constructor is private!!
! !Node(int theElement, Node*n) !
! ! !: element(theElement), next(n){ }!

!
!

! !// the integer queue class is the only!
! !// class that can create Node variables!
! !friend class IntegerQueue; ! ! ! !!

};!



4/20/14	
  

3	
  

+
Access Modifiers in C++ 

class Node{!
!

!private:!
! !int element;!
! !Node *next;!

!
! !// the constructor is private!!
! !Node(int theElement, Node*n) !
! ! !: element(theElement), next(n){ }!

!
!

! !// only the enqueue function from the!
! !// IntegerQueue class is a friend!
! !friend void IntegerQueue::enqueue(int x); !!

};!

+
Life Before Exceptions 

n  C++ was designed to be efficient and fast 

n  As a result, exception handling is not as sophisticated as Java 

n  Exception handling before “exceptions” 
n  abort – immediately terminates the program (not graceful) 

n  exit – slightly better, calls destructor of static objects, pass an int 

n  errno – a bit that can be set to indicate various errors 

n  Assertions 
n  Use assert keyword defined in cassert library 

n  Use #define NDEBUG to turn off assertions Should still do this! 



4/20/14	
  

4	
  

+
C++ Exceptions 

n  Use try-catch block like Java 

n  In C++, you can throw a variable of any type 

#include <iostream>!
using namespace std;!
!
int main() {!

!try{!
! !throw -1;!
!}!
!catch(int e) {!
! !cout << “Exception occurred: “ << e << endl;!
!}!
!return 0;!

}!

type thrown and type 
caught must match 

+
C++ Exceptions 

n  Can have multiple catch statements 

n  Use “…” to catch an exception of any type 

!try{!
! !// code here!
!}!
!catch(int e) {!
! !cout << “Integer exception: “ << e << endl;!
!}!
!catch(char e) {!
! !cout << “Char exception: “ << e << endl;!
!}!
!catch(...){ !
! !cout << “Default exception” << endl;!
!}!



4/20/14	
  

5	
  

+
C++ Exceptions 

n  C++ standard library includes exception class from which 
exception objects can be created 

n  The exception class includes the what function 
n  Returns a string description 

n  All exceptions thrown by C++ standard library are derived 
from exceptions class 

n  See C++ documentation 
n  http://www.cplusplus.com/reference/exception/
exception/!

+
Throw Lists 

n  Indicate what exceptions are thrown by function using throw lists 

double sqrt(int x) throw(int);!

n  Should be in the function prototype 

n  No list means throws anything (for backward compatibility) 

n  Empty list means throws nothing 

n  Throw lists are deprecated as of C++11 (but still supported) 



4/20/14	
  

6	
  

+
Exceptions with File I/O 

n  File I/O is always a promising place for things to go wrong! 

n  failbit means logical error in operations 
n  e.g. Tried to read a number and got a string 

n  badbit means read/write error 
n  e.g. Can’t open file 

n  The function file.exceptions() alerts compiler that if these 
bits are set an exception should be raised 

n  Good article on reading files in C++: 
n  http://gehrcke.de/2011/06/reading-files-in-c-using-ifstream-

dealing-correctly-with-badbit-failbit-eofbit-and-perror/ 


