
4/15/14	

1	

+

Lecture 33: More C++

+
Today

n Reading
n Weiss Chapter 4 and 6

n Objectives
n This week’s assignment
n The Big Three

4/15/14	

2	

+
This Week’s Assignment

n  Create a Twenty-Questions Animal Game

n  Split into two parts
n  Part 1 is due Tuesday April 22nd

n  Part 2 is due Tuesday 29th

n  Part 1 is writing the I/O functions

n  Part 2 is implementing a BinaryTree class and implementing
the main function that controls the game

+
Recap

n  A pointer is a variable that stores the memory address of
another entity (e.g. variable)

n  Call-by-value versus call-by-reference

n  C++ allows call-by-reference using the & symbol

n  A reference is a pointer to a variable that is automatically
dereferenced
n  The reference is just an alias for the original variable

void swap(int &m, int &n){!
!int temp = m;!
!m = n;!
!n = temp;!

}! formal parameters refer to actual
input arguments not copies!

4/15/14	

3	

+
Classes in C++: The Big Three

n  The Big Three: destructor, copy constructor, operator=!

n  These special functions are already written for you!

n  Rule-of-thumb: If you need to overwrite one of these,
overwrite them all!

n  Destructor
n  Called when object goes out of scope or is deleted

n  Frees resources (e.g. deletes memory, closes files)

+
Copy Constructor

n  Constructs a new object from an existing object

n  Examples of when the copy constructor is called:
n  IntCell copy = original;!

n  IntCell copy(original);!

n  a formal parameter of a call-by-value function!

n  an object returned by value!

n  It would not be called in this instance:

 IntCell copy;!

!copy = original;!

4/15/14	

4	

+
operator=!

n  Assignment for two already constructed objects

n  Example usage,

 IntCell first(3);!

!IntCell scnd;!

!scnd = first;!

+
The Big Three for IntCell class

class IntCell {!
public:!

!// destructor!
!~IntCell() { !
! !// does nothing !
!}!
!!
!// copy constructor!
!IntCell(const IntCell & rhs) : value(rhs.value) {!
! !//does nothing!
!}!

!
!// operator= on next slide!

private:!
!int value;!

};!

4/15/14	

5	

+
The Big Three for IntCell class

// assignment operator!

IntCell & operator=(const IntCell& rhs) {!

!if(this != rhs){ !// alias test!

! !value = rhs.value;!

!}!

!return *this; ! // *this is the actual object!

}!

+
The Big Three for IntCell class

n The this keyword has the same functionality as in Java
n  this is a pointer to the current object

n The alias test is extremely important
n  disallows x = x

n Function returns a reference to object
n  allows for a = b = c

4/15/14	

6	

+
The Big Three with Pointers

n  If your class contains a pointer to heap-allocated memory

n  Default destructor does not call delete

n  Default copy constructor and operation= functions only copy
the value of the pointer (not the data pointed to)
n  Called a shallow-copy

n  A deep-copy is when an entirely separate copy is made
n  Often times, this is what we really want!

+
The Big Three for IntCell class

n  Change the IntCell class to hold a pointer to an integer

n  See intcell_default.h and intcell_bigthree.h!
n  One uses the default big three

n  The other (intcell_bigthree.h) correctly overwrites the big
three

n  Miscellaneous final comments
n  To disallow default copy constructor and operator=, move to

private section

n  The this keyword has type Class* const (can’t modify)

4/15/14	

7	

+
Access Modifiers in C++

n  In Java: public, protected, private, and “default”

n  In C++: public, private, and friend

n  Friends are allowed access to the private section of class

