Lecture 32: More C++

+
Today

mReading
m Weiss Ch. 3,4

mObjectives
m Pointers in C++
= Call-by-value vs. call-by-reference
= The Big Three

4/13/14

+_)
Pointers in C++ |I

m A pointer is a variable that stores the memory address of another
entity (e.g. variable)

m Use the * operator to declare a pointer
int *ptrl, *ptr2; //not initialized yet!
m Use the & operator to get the address of a variable
ptrl = &x; // x was previously declared
m Use the * operator to go from the pointer to the data being pointed to

*ptrl = 10; // x = 10 now

+_)
Pointers in C++ |I

int a = 5

What are the values of the following?
int *ptr

Il ~e

&aj;

. ptr

*ptr
. ptr =
. ptr
&ptr
*a

*&a
**&ptr

I
V)]

&a

TQ O QOO

4/13/14

4/13/14

+
Dynamically allocated memory

®m The new keyword allocates memory from the heap
string *strPtr = new string(“hello”);
int *intPtr = new int(5);

= Tip: Don’t use new when a stack-allocated variable can be
used instead!

= Tip: If you do use new make sure you use delete
m Tip: If you have multiple pointers to same piece of memory

= Beware of stale pointers (point to already freed memory)

= Beware of double deleting (deleting same piece of memory

twice)

+
Call-by-value

m Java and C++ use call-by-value when passing parameters

m Call-by-value means the value of the input arguments are
copied into the formal parameters

formal parameters

int main() { / \
int x = 5; " \
int y = 7; void swap(int m, int n){
int temp = m;
Swap (X, Y ¥ m=n;
— n = temp;
} input arguments | }

x and y aren’t swapped!

Call-by-reference

m C++ allows call-by-reference

int main() { A~

int x = 5; void swap(int@ int @{

int y = 7; int temp = m;

m = ny
swap(5,7); n = temp;
}
}
x and y are now swapped!

Call-by-reference

void swap(int &m, int &n){
int temp = m;
m = n;
n temp;

m A reference variable is different from a pointer variable

m In this context, the & operator makes m and n reference
variables

m i.e., m and n refer to actual variables and not copies!

4/13/14

Binary Search Example

int binarySearch(int val,vector<int> arr,int lo, int hi)
{
if(lo > hi) { return -1; }
int mid = (lo+hi)/2;
if(arr[mid] == val) {
return mid;
}
else if(val < arr[mid]) {
return binarySearch(val, arr, lo, mid-1);

}

else {
return binarySearch(val, arr, mid, hi);

}
This is inefficient. Why?

Binary Search Example

new function prototype

/

int binarySearch(int val, const vector<int>& arr,int lo, int hi);

m The & operator means no copying of input
arguments

m const means this function will not change (mutate)
this input parameter

Only const methods can be called on arr

4/13/14

4/13/14

+) i
More Pointers in C++

m The dereference operator * has low precendence

m Pointers to objects (e.g. vector<int>* vecPtr)
m Use parenthesis to enforce order: (*vecPtr).push_back(5)
= Alternatively, use the -> operator: vecPtr->push_back(5)

+)
Classes in C++

m The Big Three: destructor, copy constructor, operator=
m These special functions are already written for you!

m Rule-of-thumb: If you need to overwrite one of these,
overwrite them all!

m Destructor
= Called when object goes out of scope or is deleted
= Frees resources (e.g. memory, closes files)

=+

Copy Constructor

m Constructs a new object from an existing object
m The copy constructor is called when,
IntCell copy = original;
IntCell copy(original);
an input parameter to a call-by-value function
an object returned by value
m It would not be called in this instance:
IntCell copy;

copy = original;

4

operator=

m Assignment for two already constructed objects
m Example usage,

IntCell first(3);

IntCell scnd;

scnd = first;

4/13/14

