
4/8/14	

1	

+

Lecture 30: More C++

+
Today

n Reading
n  Weiss Ch. 1, Ch. 2

n  (Weiss Ch. 4 is on classes)

n Objectives
n  Introduction to C++

n  Classes in C++

n Announcements
n  Quiz on Friday (one question on hash maps, one on C++)

4/8/14	

2	

+
This week’s assignment

n  Implement a priority queue in C++

n  The header file is provided as starter code

n  Use Aquamacs and Terminal

n  Today’s lecture and lab will help prepare you with the
assignment

n  “Java Structures” provides you already with an
implementation for a priority queue (see the book)

n  C++ Library Reference (link on course webpage)

+
Similarities between C++ and Java

n  The main method

n  Primitive types – int, double, float, etc

n  Syntax – curly brackets, function syntax, return statements, etc

n  Control constructs – loops and conditionals

n  Generics

n  Other things you’ll discover along the way

4/8/14	

3	

+
Using the std namespace

n  Namespaces are a generalization of packages
n  Named region of code contained in curly brackets

n  Helps disambiguate between variables and functions with same
name

n  The std namespace
n  Always have to specify

n  In C++, the vector type is in the std namespace

n  To use std!
n  Write using std namespace; at top of file

n  Use :: operator, e.g. std::vector or std::cout!

the “using” keyword
is similar to import
statement in Java

+
Operator Overloading

n  Define a meaning for existing operations (e.g. + or []) for new
class types

 nums[i] // nums is a vector (i.e. an ArrayList in Java)

n  Overloaded the [] operator so that it acts like the ``at” method
n  The “at” method is bounds checked and throws an exception

n  There’s no check in C++

n  C++ documentation for vector shows the “operator[]” and
“operator=“ functions

n  Makes classes look like primitives

4/8/14	

4	

+
Object management

n In Java, most types are objects
n  Everything except for primitives are allocated using new!

n  Memory is taken from the heap

n In C++, everything is a primitive
n  Allocated on the stack not the heap

n  Allocate from heap by explicitly using the new

+
Object management

vector<int> nums; !
nums.push_back(5);!

n  Allocated on the stack

n  Creates an empty vector of ints
n  No need to use new keyword

n  Looks similar to declaring a
primitive

ArrayList<Integer> nums;!
nums = new ArrayList();!

nums.add(5);

n  Allocated on the heap

n  Without the second line, we
get a NullPointerException!

C++ Java

4/8/14	

5	

+
Object management

vector<int> nums2 = nums; ! ArrayList<Integer> nums2;!
nums2 = nums;!

!

C++ Java

n  This difference between C++ and Java changes the semantics of
assignment and parameter passing

n  Assignment means copying

n  Parameters are copied (called pass-by-value)

n  Variables are no longer names with arrows pointing to the same
memory location

+
Classes in C++

n  See IntCell class in intcell_onefile.cpp!

n  Classes in C++
n  Class declaration ends with semicolon!

n  Visibility (public, private) declared for sections not individual members

n  Default is private

n  Can only use IntCell class in same file!

4/8/14	

6	

+
Classes in C++

n  Move class definition to header file (.h) so it can be imported
n  See intcell_better.cpp and intcell_better.h!

n  An even better idea: separate the declaration of the class from
the implementation of the class

n  See intcell_best.cpp, intcell_best.h, and
intcell_tester.h!

n Only need to include the header file (.h) to compile a
user’s code

n Can change implementation without recompiling user’s
code

+
Classes in C++

n  Include files can include more include files…

n  Code won’t compile if include a file more than once!
!

! !#ifndef INTCELL_BEST_H!
! !#define INTCELL_BEST_H!
! !// class declaration!
! !#endif!

n  If variable INTCELL_BEST_H is already defined then won’t
include the class declaration

n  Always do this when defining class declaration in header file!

4/8/14	

7	

+
The const keyword

n  Accessor method vs. mutator method

n  Using const tells the compiler that the function is an accessor
n  Promise function will not change the state of the object

n  Allows compiler to optimize your code

+
Destructors

n  There is no garbage collection in C++

n  Any memory you allocate from the heap, you must free!
n  Otherwise, you have a “memory leak”

n  The destructor is called when the variable goes out of scope

n  Name of the destructor is ~ClassName!

4/8/14	

8	

+
Assertions

n  To write an assertion,

!#include<cassert> // need to include this!
!...!
!assert (boolean_expression);!

!

n  Can turn off assertions if you write

!#define NDEBUG!

 before the #include<cassert> statement

