
1/26/14!

1!

+!

Lecture 3: ArrayList &
Standard Java Graphics

+!
Today

n Reading
n  Standard Java Graphics (on course webpage)

n Objectives
n  Review for this week’s lab and homework assignment

n  Miscellanea (Random, Scanner)

n  Arrays and ArrayList

n  Graphics

n Reminders
n  Read lab writeup before Wednesday!

n  This Friday will be our first in-class quiz!

n  Won’t have office hours today

1/26/14!

2!

+!
Random Number Generator

n Random class in the java.util package
n  int nextInt(int n) -- returns random k s.t. 0 ≤ k < n
n See bottom of JS pg 30 for example

n Create Random object once. Call nextInt many
times.

n See LottoHelper example.

+!
Text Input

n Scanner class
n Constructor: myScanner = new Scanner(System.in)

n can use file instead of System.in
n new Scanner(new File(“filename”))

n Read values:
n myScanner.nextInt() -- returns an int
n myScanner.nextDouble() -- returns a double
n myScanner.nextLine() -- returns String to end of line
n see documentation for more

1/26/14!

3!

+!
Assertions in Java

n We won’t use the Assert class from Bailey.

n Command to check assertions in standard Java
n  assert boolExp

n  assert boolExp: message

n Article on when to use assert:
n  http://download.oracle.com/javase/7/docs/technotes/

guides/language/assert.html

n  Short summary -- never use for preconditions of public
methods -- make explicit checks

n  Use for postconditions & class invariants

+!
Turning on assert

n Turn on assertions when run program:
n Run > Run Configurations
n Arguments tab

n Add “-ea” (without quotes) in the “VM
arguments” field

n If leave it off, then ignores assert statements.

n If on and assertion is false, will raise an
AssertionError exception and print associated
message

1/26/14!

4!

+!
Arrays

n Our first data structure
n The most beloved of all data structures!

n Arrays are containers that hold objects
n Different syntax from objects
n Public instance variable “length”

n Because of limitations of Java virtual machine (JVM)
cannot create array of type variable (generics):
n “new T[5]” is illegal if T is a type variable
n “new C[5]” is legal if C is a primitive, class, or interface

+!
ArrayList

n What happens if need more space in array than
originally allocated?

n ArrayList is a class that dynamically expands as
needed.

n Part of the java.util package

n To get access write “import java.util.ArrayList”

n  JS uses Vector rather than ArrayList.
n  ArrayList more efficient if no concurrency

1/26/14!

5!

+!
ArrayList Specification

n Class ArrayList<E>

n  Important methods:
n  add, get, set, indexOf, isEmpty, remove, size, contains,

clear

n  size, isEmpty, get, set take constant time

n  add (to end) is “amortized constant” time

n Read javadoc at
n  JavaDoc for ArrayList

+!
Java Graphics

n GUIs
n  JFrame: all visible components are drawn in the content pane

n  JPanel: not drawable, used for layout management

n  JButton, JTextField, JSlider, JChooser, etc.

n Events
n  Implement MouseListener, ActionListener, ChangeListener

n Graphics
n  May be familiar with DrawingCanvas from objectdraw
n  Focus of today’s lecture

1/26/14!

6!

+!
Graphics context

n All drawing is done in “paint” method of
component

n public void paint(Graphics g)
n  g is a Graphics context

n  Think of paint as a “pen” drawing on the screen

n  Programmer calls repaint(), not paint!

n Need to import classes from java.awt.*,
java.awt.geom.*, and javax.swing.*

n See MyGraphicsDemo

+!
General graphic applications

n  Create an extension of component (either JPanel, JFrame, or
JApplet) and implement paint method in the subclass.
n  See main method of demo to get window to show

n  Start paint method by casting g to Graphics2D to get access
to new methods

n  Call repaint() on component every time make a change.
n  Causes OS to schedule call of paint in event queue

n  Called automatically if window obscured and revealed

1/26/14!

7!

+!
Geometric Objects

n  Objects from classes Rectangle2D.Double, Line2D.Double,
etc. from java.awt.geom
n  There are also float versions

n  Common superclass is Rectangular

n  Constructors take params x, y, width, height,

n  but don’t draw object

n  myObj.setFrame(x, y, width, height) can move object

n  g2.draw(myObj) -- gives outline

n  g2.fill(myObj) -- gives filled version

n  g2.drawString(“a string”, x, y) draws string

+!
MyGraphicsDemo

n Class extends JFrame, which creates window.
n  Constructor calls super with title of window.

n Main method creates object, sets size, visibility, and
enables go-away box in upper left

n Paint method creates and draws objects.

1/26/14!

8!

+!
PostItStdApplication

n More sophisticated
n  JFrame contains two JPanels

n  JFrame uses BorderLayout, so add controls to JPanel in
SOUTH, drawing canvas in CENTER of contentPane of
JFrame
n  Ignore controls for now.

n  See GUI cheat sheet for details

n  DrawingCanvas extends JPanel -- contains paint method

n  Note use of ArrayList to hold PostIts.

