Lecture 29: Maps/C++

+
Today

mReading
m (Weiss Chapter O — interesting history)
= Weiss Chapter 1, 2

mObjectives
m Collisions and load factor
® Introduction to C++

4/6/14



Hash Functions

m A function from the set of keys to array subscripts

H : K — Subscripts

m Ideally:
= H(k) can be computed quickly
= His a one-to-one function, i.e. if H(k,) = H(k,) then k, = k,

= Called a perfect hashing function (hard to find)

m Ideally, allows for O(1) search, insert, and delete

Hashing Collisions

m A collision occurs when k1 # k2 but H(k1) = H(k2)

= Two solutions:
= Open addressing: rehash as needed to find empty slot
= External chaining: keep all entries that hash to same subscript in list

4/6/14



+
Primary and secondary clustering

m Primary and secondary clustering apply only to open
addressing schemes

m Primary clustering

= Two values that hash to same slot continue to compete during
rehashing

= When an open addressing scheme tends to create long stretches
of filled slots

m Secondary clustering

= Two values that hash to different slots eventually compete during
rehashing

==
Open addressing (Probing)

m Linear probing
= Use (currentSlot + offset) % (array.length)

= offeset should be relatively prime to array length to ensure we search
every array slot (use array whose length is prime)

= Easy to implement but prone to primary and secondary clustering

® Quadratic probing
= Use (currentSlot + j2) % (array.length) on j* rehash
= Helps with secondary clustering but not primary
= Can result in case where we don’t search every slot

m e.g.arraylength =5and H(k) = 1

4/6/14



+
Open addressing (Probing)

m Double hashing
m Use second hash function to determine the offset

= e.g.Suppose we use H,(x) = x mod N for the array subscript and
H,(x) = x mod (N-2) + 1 for offset for N=85

= Helps with primary and secondary collisions

Collisions! Different offsets Next subscripts to try
H,(1) =1 Hy(1) =2 1+2
H,6) =1 H,(6) =1 1+1
H,(1)=1 H,(11) =3 1+3

External Chaining

m Each slot in table (array) holds unlimited number of entries
= Each slot contains a list data structure (e.g. linked list)
= Each list should be short
= No elements hashed can be greater than size of array
= Avoids secondary clustering

4/6/14



4/6/14

+
Analysis of Hashing

m The load factor is given by the ratio

number of values stored in table
o =

size of table

m Open addressing (alpha is <= 1)
m External chaining (alpha can be greater than 1)

m The higher the load factor, the more likely you are to have
collisions

+
Analysis of Hashing

. Method | Successful Unsuccessful
qua(lil?aet?(f ;rfbing\> Linear probes % (1 * ﬁ) % (1 + ﬁ)
Double hashing 1 ﬁ —
External chaining 1+ ja
N
Note typo
alpha = 0.9 Successful Unsuccessful in text
Linear probes 5.5 50.5
Double hashing 2.6 10
External chaining 1.45 33




4/6/14

+
Analysis of Hashing

5 T T
linear, not found ——
linear, found
double, not found -~
4 F " double, found
chaining, not found ---——-
chaining, found ----

Number of Probes

0 02 04 0.6 0.8 1 1.2
Load Factor (Stored Values/Table Size)

==
Extremely simplified history!

m C was developed in 1972
= Designed for systems programming
= Provides low-level access to memory
= Extremely popular still today
= Fast

m C++ developed in mid 70’s by Bjarne Stroustrup
= C with object oriented support
= Backwards compatible with C
= Still fast and still widely used today

m Java developed by Sun Microsystems in 90s
= Uses C/C++ syntax
= Explicitly disallows “bad programming”
= Bytecode runs on virtual machine




Similarities between C++ and Java

m See first.cpp
m Contains a main method

m Similar primitive types: int, float, double, bool, char, void
= Can also be signed (possibly negative) or unsigned (always positive)
= Can be short (fewer bytes) or long (more bytes)

m C++ has the Standard Template Library (STL) with many of the
same data structures available

m Syntax
= Curly brackets
= Function syntax: return type, name, parameters

Similarities between C++ and Java

m Control constructs
= for loops, while loops, if statements, if-else, switch, do-while

m Generics
= Generics in Java are relatively recent addition (Java 5)

= Generics in C++ work very differently

m The “.” operator to invoke a function on an object

4/6/14



Differences between C++ and Java

m C++ doesn’t require classes
= Procedural language

= All execution begins with main method

= #include statements
= Equivalent to copying and pasting file
= The # symbol is a preprocessor directive, i.e. resolved before compile
time

= Use #include<file> for built-in system files and #include “file”
for user defined files

Differences between C++ and Java

m Must declare all variables and functions before you use them.
= Historically C++ compiler process source code from top to bottom
= When function is called, compiler looks for functions it’s already seen

m Solutions
= Define all functions before you invoke them
= Place function prototype at top of file

= Create a .h (header) file to contain function prototypes and use
#include

4/6/14



Using the std namespace

m Namespaces are a generalization of packages
= Named region of code contained in curly brackets

= Helps disambiguate between variables and functions with same
name

m The std namespace
= Always have to specify
m In C++, the vector type is in the std namespace

the “using” keyword
is similar to import
= Write using std namespace; at top of file statement in Java

= To use std

= Use :: operator, e.g. std: :vector or std::cout

Object management

= In Java, most types are Objects
= Except for primitives such as int, double, boolean, etc

m In C++, everything is a primitive
= Allocated on the stack not the heap
= Allocate from heap using new keyword explicitly

m Changes the semantics of assignment and parameter passing
= Assignment means copying!
= Parameters are copied (called pass-by-value)!

= Variables are no longer names with arrows pointing to the same
memory location!

4/6/14



