
4/6/14	

1	

+

Lecture 29: Maps/C++

+
Today

n Reading
n (Weiss Chapter 0 – interesting history)
n Weiss Chapter 1, 2

n Objectives
n Collisions and load factor
n Introduction to C++

4/6/14	

2	

+
Hash Functions

n  A function from the set of keys to array subscripts

n  Ideally:
n  H(k) can be computed quickly

n  H is a one-to-one function, i.e. if H(k1) = H(k2) then k1 = k2

n  Called a perfect hashing function (hard to find)

n  Ideally, allows for O(1) search, insert, and delete

T1

T
P

=
1

S + 1�S

P

T1

T1
=

1

S

H : K �! Subscripts

14

+
Hashing Collisions

n  A collision occurs when k1 ≠ k2 but H(k1) = H(k2)

n  Two solutions:
n  Open addressing: rehash as needed to find empty slot

n  External chaining: keep all entries that hash to same subscript in list

4/6/14	

3	

+
Primary and secondary clustering

n  Primary and secondary clustering apply only to open
addressing schemes

n  Primary clustering
n  Two values that hash to same slot continue to compete during

rehashing

n  When an open addressing scheme tends to create long stretches
of filled slots

n  Secondary clustering
n  Two values that hash to different slots eventually compete during

rehashing

+
Open addressing (Probing)

n  Linear probing
n  Use (currentSlot + offset) % (array.length)

n  offeset should be relatively prime to array length to ensure we search
every array slot (use array whose length is prime)

n  Easy to implement but prone to primary and secondary clustering

n  Quadratic probing
n  Use (currentSlot + j2) % (array.length) on jth rehash

n  Helps with secondary clustering but not primary

n  Can result in case where we don’t search every slot

n  e.g. array.length = 5 and H(k) = 1

4/6/14	

4	

+
Open addressing (Probing)

n  Double hashing
n  Use second hash function to determine the offset

n  e.g. Suppose we use H1(x) = x mod N for the array subscript and
H2(x) = x mod (N-2) + 1 for offset for N=5

n  Helps with primary and secondary collisions

H1(1) = 1
H1(6) = 1
H1(11) = 1

H2(1) = 2
H2(6) = 1
H2(11) = 3

1 + 2
1 + 1
1 + 3

Collisions! Different offsets Next subscripts to try

+
External Chaining

n  Each slot in table (array) holds unlimited number of entries
n  Each slot contains a list data structure (e.g. linked list)

n  Each list should be short

n  No elements hashed can be greater than size of array

n  Avoids secondary clustering

4/6/14	

5	

+
Analysis of Hashing

n  The load factor is given by the ratio

n  Open addressing (alpha is <= 1)

n  External chaining (alpha can be greater than 1)

n  The higher the load factor, the more likely you are to have
collisions

T1

T
P

=
1

S + 1�S

P

T1

T1
=

1

S

H : K �! Subscripts

s[0] ⇤ 31n�1 + s[1] ⇤ 31n�2 + . . . s[n� 2] ⇤ 31 + s[n� 1]

↵ =
number of values stored in table

size of table

14

+
Analysis of Hashing

15.4 Constant Time Maps: Hash Tables 389

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700 800 900

Fr
eq
ue
nc
y

Bucket

Figure 15.10 Frequency of words from dictionary hashing to each of 997 buckets,
using the Java hash code generation.

large indices. When c = 256, the hash code represents the first few characters
of the string exactly (see Figure 15.9). Java currently hashes with c = 31.

The hashing mechanism used by Java s in an early version of Java’s
development environment (see Figure 15.10) used a combination of weight-
ings that provided a wide range of values for short strings and was efficient
to compute for longer strings. Unfortunately, the constant-time algorithm was
not suitable for distinguishing between long and nearly identical strings often
found, say, in URLs.

Method Successful Unsuccessful
Linear probes 1

2

⇣
1 +

1
(1�↵)

⌘
1
2

⇣
1 +

1
(1�↵)2

⌘

Double hashing 1
↵

ln

1
(1�↵)

1
1�↵

External chaining 1 +

1
2↵ ↵ + e�↵

Figure 15.11 Expected theoretical performance of hashing methods, as a function of
↵, the current load factor. Formulas are for the number of association compares needed
to locate the correct value or to demonstrate that the value cannot be found.

linear and
quadratic probing

alpha = 0.9 Successful Unsuccessful
Linear probes 5.5 50.5
Double hashing 2.6 10
External chaining 1.45 3.3

Note typo
in text

4/6/14	

6	

+
Analysis of Hashing

390 Maps

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 1.2

N
um

be
r o

f P
ro

be
s

Load Factor (Stored Values/Table Size)

linear, not found
linear, found

double, not found
double, found

chaining, not found
chaining, found

Figure 15.12 The shape of the theoretical performance curves for various hashing
techniques. (These graphs demonstrate theoretical predictions and not experimental re-
sults which are, of course, dependant on particular data and hashing functions.) Our
hash table implementation uses linear probing.

+
Extremely simplified history!

n  C was developed in 1972
n  Designed for systems programming
n  Provides low-level access to memory
n  Extremely popular still today
n  Fast

n  C++ developed in mid 70’s by Bjarne Stroustrup
n  C with object oriented support
n  Backwards compatible with C
n  Still fast and still widely used today

n  Java developed by Sun Microsystems in 90s
n  Uses C/C++ syntax
n  Explicitly disallows “bad programming”
n  Bytecode runs on virtual machine

4/6/14	

7	

+
Similarities between C++ and Java

n  See first.cpp!

n  Contains a main method

n  Similar primitive types: int, float, double, bool, char, void
n  Can also be signed (possibly negative) or unsigned (always positive)
n  Can be short (fewer bytes) or long (more bytes)

n  C++ has the Standard Template Library (STL) with many of the
same data structures available

n  Syntax
n  Curly brackets
n  Function syntax: return type, name, parameters

+
Similarities between C++ and Java

n  Control constructs
n  for loops, while loops, if statements, if-else, switch, do-while

n  Generics
n  Generics in Java are relatively recent addition (Java 5)

n  Generics in C++ work very differently

n  The “.” operator to invoke a function on an object

4/6/14	

8	

+
Differences between C++ and Java

n  C++ doesn’t require classes
n  Procedural language

n  All execution begins with main method

n  #include statements
n  Equivalent to copying and pasting file

n  The # symbol is a preprocessor directive, i.e. resolved before compile
time

n  Use #include<file> for built-in system files and #include “file”
for user defined files

+
Differences between C++ and Java

n  Must declare all variables and functions before you use them.
n  Historically C++ compiler process source code from top to bottom

n  When function is called, compiler looks for functions it’s already seen

n  Solutions
n  Define all functions before you invoke them

n  Place function prototype at top of file

n  Create a .h (header) file to contain function prototypes and use
#include!

4/6/14	

9	

+
Using the std namespace

n  Namespaces are a generalization of packages
n  Named region of code contained in curly brackets

n  Helps disambiguate between variables and functions with same
name

n  The std namespace
n  Always have to specify

n  In C++, the vector type is in the std namespace

n  To use std!
n  Write using std namespace; at top of file

n  Use :: operator, e.g. std::vector or std::cout!

the “using” keyword
is similar to import
statement in Java

+
Object management

n  In Java, most types are Objects
n  Except for primitives such as int, double, boolean, etc

n  In C++, everything is a primitive
n  Allocated on the stack not the heap

n  Allocate from heap using new keyword explicitly

n  Changes the semantics of assignment and parameter passing
n  Assignment means copying!

n  Parameters are copied (called pass-by-value)!

n  Variables are no longer names with arrows pointing to the same
memory location!

