
4/3/14	

1	

+

Lecture 28: Maps

+
Today

n Reading
n  JS Chapter 15.1-15.7

n Objectives
n  Finish deadlocks

n  Maps, HashMaps

n  Hash functions

n  (Collisions)

4/3/14	

2	

+
Deadlock

n A deadlock occurs when there are threads T1, …, Tn
such that:
n  Ti is waiting for a resource held by Ti+1 for i=1,..,n-1

n  Tn is waiting for a resource held by T1

n A cycle of waiting
n  Can formalize as a graph of dependencies with cycles bad

n Deadlock avoidance in programming amounts to
techniques to ensure a cycle can never arise

+
Solving Deadlocks

Options for avoiding deadlocks:

n No thread ever holds more than one lock

n Define globally agreed upon order for locks

n  Dining Philosopher’s Problem (Dijkstra)

n  Every bank account has unique number – acquire lock for

lower ordered bank accounts first

n Sometimes can’t guarantee no deadlock

4/3/14	

3	

+
A Last Example

From the Java standard library

class StringBuffer { // a mutable String!
 private int count;!
 private char[] value;!
 …!
 synchronized append(StringBuffer sb) {!
 int len = sb.length();!
 if(this.count + len > this.value.length)!
 this.expand(…);!
 sb.getChars(0,len,this.value,this.count);!
 }!
 synchronized getChars(int x, int, y, !
 char[] a, int z) {!
 “copy this.value[x..y] into a starting at z”!
 }!
}!

+
Two problems

n  Problem #1: Lock for sb is not held between calls to sb.length
and sb.getChars
n  The variable sb could get longer
n  Would cause append to throw an ArrayBoundsException!

n  Problem #2: Deadlock potential if two threads try to append in
opposite directions

n  Not easy to fix both problems:
n  Do not want unique ids on every StringBuffer!
n  Do not want one lock for all StringBuffer objects

n  Actual Java library fixed neither (left code as is; changed javadoc)
n  Up to clients to avoid such situations with own protocols

4/3/14	

4	

+
Concurrency summary

n  Correctly and efficiently controlling access to shared resources
n  Benefits
n  Race conditions: bad interleavings, data races
n  Critical sections too small
n  Deadlocks

n  Requires synchronization
n  Locks for mutual exclusion

n  Guidelines for correct use help avoid common pitfalls

n  Getting shared memory correct is hard!

+
Class to Date

n Data structures

n Complexity

n Sorting

n Parallelism and Concurrency

n Additional data structures (maps, hashmaps)

n C++

n Graph Algorithms

4/3/14	

5	

+
Map<K,V>

n A collection of associations between a key and an
associated value
n  e.g. name and phone number

n  e.g. word and definition

n  (not Bailey’s Association)

n Many possible implementations

n Also called “dictionary” since provides good
implementation of a lookup table

+
The Java Map Interface

public interface Map<K,V> {!
!public boolean containsKey(Object k);!

!public boolean containsValue(Object v);!
!public V get(Object k);!

!public V put(K k, V v);!

!public V remove(K k);!
!public void putAll(Map<K,V> other);!

!public Set<K> keySet();!
!public Collection<V> values();!

!public Set<Map.Entry<K,V>> entrySet();!

!public boolean equals(Object o);!
!public int hashCode(); !!

!// Also has size(), clear(), isEmpty()!
}!

Map.Entry is the equivalent of Bailey’s Association

4/3/14	

6	

+
Map Implementations

n = number of elements in map

Sorted array and balanced BST require comparable keys

Last implementation requires keys that can be used as array subscripts

Data Structure Search Insert Delete Space

Linked List O(n) O(1) O(n) O(n)

Sorted Array O(log2n) O(n) O(n) O(n)

Balanced BST O(log2n) O(log2n) O(log2n) O(n)

array[KeyRange] O(1) O(1) O(1) O(KeyRange)

+
Hash Table

n  What are some of the drawbacks of using keys as subscripts?
n  Restricts types of keys

n  Keys often too sparse

n  e.g. use SSN for table of students

n  Instead use a function that maps from keys to subscripts
(control the range)

k H array
index

4/3/14	

7	

+
Hash Functions

n  A function from the set of keys to array subscripts

n  Ideally:
n  H(k) can be computed quickly
n  H is a one-to-one function, i.e. if H(k1) = H(k2) then k1 = k2
n  Called a perfect hashing function (hard to find)

n  hashCode function is built-in to Java classes – hashes the object
and returns an integer

n  Require that if k1.equals(k2) then H(k1) == H(k2)

n  If override equals method, must override hashCode!

T1

T
P

=
1

S + 1�S

P

T1

T1
=

1

S

H : K �! Subscripts

14

+
Examples of Hash Functions

n  For String Java uses:

 H(s) = s[0]*31(n-1) + s[1]*31(n-2) + … + s[n-2]*31 + s[n-1]

n  For integers, we could use:

 H(x) = x mod N where N is the size of the array

n  For social security numbers, we could use (not the best):

 H(ssn) = (last 4 digits) mod N

n  Bad hash function for strings:

 H(s) = (length of s) mod N

 H(s) = sum of characters in s

4/3/14	

8	

+
Hashing Collisions

n  A collision occurs when k1 ≠ k2 but H(k1) = H(k2)

n  Two solutions:
n  Open addressing: rehash as needed to find empty slot

n  External chaining: keep all entries that hash to same subscript in list

i <k1, v1>
If k2 maps to i as well, where do

we put the entry <k2, v2>?

+
Primary and secondary clustering

n  Primary clustering
n  When an open addressing scheme tends to create long stretches

of filled slots

n  “Two values that hash to same slot continue to compete during
rehashing”

n  Secondary clustering
n  Two values that hash to different slots eventually compete during

rehashing

n  Pertain only to open addressing schemes

4/3/14	

9	

+
Open addressing (Probing)

n  Linear probing
n  Use (currentSlot + offset) % (array.length)

n  offeset should be relatively prime to array length to ensure we search
every array slot (use array whose length is prime)

n  Easy to implement but prone to primary clustering

n  Quadratic probing
n  Use (currentSlot + j2) % (array.length) on jth rehash

n  Helps with secondary clustering but not primary

n  Can result in case where we don’t search every slot

n  e.g. array.length = 5 and H(k) = 1

+
Open addressing (Probing)

n  Double hashing
n  Use second hash function to determine the offset

n  e.g. Suppose we use H1(x) = x mod N for the array subscript and
H2(x) = x mod (N-2) + 1 for offset for N=5

n  Helps with primary and secondary collisions

H1(1) = 1
H1(6) = 1
H1(11) = 1

H2(1) = 2
H2(6) = 1
H2(11) = 3

H(1) = 1 + 2
H(6) = 1 + 1
H(11) = 1 + 3

Collisions! Different offsets Next subscripts to try

4/3/14	

10	

+
External Chaining

n  Each slot in table (array) holds unlimited number of entries
n  Each slot contains a list data structure (e.g. array, linked list)

n  Each list should be short (balanced BST would be overkill)

n  Deleting is simple

n  No elements hashed can be greater than size of array

n  Avoids secondary clustering

