Lecture 28: Maps

+
Today

m Reading
= JS Chapter 15.1-15.7

m Objectives
m Finish deadlocks
= Maps, HashMaps
= Hash functions
m (Collisions)

4/3/14

4/3/14

+
Deadlock

m A deadlock occurs when there are threadsT,, ..., T
such that:

= T, is waiting for a resource held by T, , for i=1,..,n-1

n

m T, is waiting for a resource held by T,

m A cycle of waiting

= Can formalize as a graph of dependencies with cycles bad

m Deadlock avoidance in programming amounts to
techniques to ensure a cycle can never arise

+
Solving Deadlocks

Options for avoiding deadlocks:
m No thread ever holds more than one lock
m Define globally agreed upon order for locks

= Dining Philosopher’s Problem (Dijkstra)

m Every bank account has unique number — acquire lock for

lower ordered bank accounts first

m Sometimes can’t guarantee no deadlock

4/3/14

+
A Last Example

From the Java standard library

class StringBuffer { // a mutable String
private int count;
private char[] value;

synchronized append(StringBuffer sb) {
int len = sb.length();
if(this.count + len > this.value.length)
this.expand(..);
sb.getChars(0,len,this.value,this.count);
}
synchronized getChars(int x, int, vy,
char[] a, int z) {
“copy this.value[x..y] Into a starting at z”

Two problems

m Problem #1: Lock for sb is not held between calls to sb.length
and sb.getChars

= The variable sb could get longer
= Would cause append to throw an ArrayBoundsException

= Problem #2: Deadlock potential if two threads try to append in
opposite directions

m Not easy to fix both problems:
= Do not want unique ids on every StringBuffer
= Do not want one lock for all StringBuffer objects

m Actual Java library fixed neither (left code as is; changed javadoc)
= Up to clients to avoid such situations with own protocols

=+
Concurrency summary

m Correctly and efficiently controlling access to shared resources
= Benefits
= Race conditions: bad interleavings, data races
= Critical sections too small
= Deadlocks

m Requires synchronization
m Locks for mutual exclusion

m Guidelines for correct use help avoid common pitfalls

m Getting shared memory correct is hard!

+
Class to Date

m Data structures

m Complexity

m Sorting

m Parallelism and Concurrency

m Additional data structures (maps, hashmaps)
nC++

m Graph Algorithms

4/3/14

Map<K, V>

m A collection of associations between a key and an

associated value
e.g.name and phone number
e.g. word and definition
(not Bailey’s Association)

m Many possible implementations

m Also called “dictionary” since provides good
implementation of a lookup table

The Java Map Interface

public interface Map<K,V> {
public boolean containsKey(Object k);
public boolean containsValue(Object v);
public V get(Object k);
public V put(K k, V v);
public V remove(K k);
public void putAll(Map<K,V> other);
public Set<K> keySet();
public Collection<V> values();
public Set<Map.Entry<K,V>> entrySet();
public boolean equals(Object o);
public int hashCode();
// Also has size(), clear(), isEmpty()

Map.Entry is the equivalent of Bailey’s Association

4/3/14

4/3/14

+
Map Implementations |I

Data Structure | _Search | Insert | Delete | _Space _

Linked List O(n) o(1) O(n) O(n)
Sorted Array O(log,n) O(n) O(n) O(n)
Balanced BST O(log,n) O(log,n) O(log,n) O(n)

array[KeyRange] o) o) o) O(KeyRange)

n = number of elements in map
Sorted array and balanced BST require comparable keys

Last implementation requires keys that can be used as array subscripts

+
Hash Table

m What are some of the drawbacks of using keys as subscripts?
= Restricts types of keys
= Keys often too sparse

= e.g.use SSN for table of students

m Instead use a function that maps from keys to subscripts
(control the range)

array

k——
index

Hash Functions

m A function from the set of keys to array subscripts

H : K — Subscripts

m Ideally:
= H(k) can be computed quickly
= His a one-to-one function, i.e.if H(k,;) = H(k,) then k, = k,
= Called a perfect hashing function (hard to find)

m hashCode function is built-in to Java classes — hashes the object
and returns an integer

m Require thatif k1.equals (k2) then H(kl) == H(k2)

m If override equals method, must override hashCode

+

Examples of Hash Functions

m For String Java uses:
H(s) = s[0]*31® D + g[1]*31™2) + .. + s[n-2]*31 + s[n-1]
m For integers, we could use:
H(x) = x mod N where N is the size of the array
m For social security numbers, we could use (not the best):
H(ssn) = (last 4 digits) mod N
= Bad hash function for strings:
H(s) = (length of s) mod N

H(s) = sum of characters in s

4/3/14

4/3/14

Hashing Collisions

m A collision occurs when k1 # k2 but H(k1) = H(k2)

= Two solutions:
= Open addressing: rehash as needed to find empty slot
= External chaining: keep all entries that hash to same subscript in list

<k,,v,> If k, maps to i as well, where do
we put the entry <k,, v,>?

-

+
Primary and secondary clustering

m Primary clustering

= When an open addressing scheme tends to create long stretches
of filled slots

= “Two values that hash to same slot continue to compete during
rehashing”

= Secondary clustering

= Two values that hash to different slots eventually compete during
rehashing

m Pertain only to open addressing schemes

4/3/14

+
Open addressing (Probing)

m Linear probing
= Use (currentSlot + offset) % (array.length)

= offeset should be relatively prime to array length to ensure we search
every array slot (use array whose length is prime)

= Easy to implement but prone to primary clustering

®m Quadratic probing
= Use (currentSlot + j2) % (array.length) on j* rehash
= Helps with secondary clustering but not primary
= Can result in case where we don'’t search every slot

m e.g.array.length =5 and H(k) = 1

==
Open addressing (Probing)

m Double hashing
m Use second hash function to determine the offset

= e.g.Suppose we use H,(x) = x mod N for the array subscript and
H,(x) = x mod (N-2) + 1 for offset for N=5

= Helps with primary and secondary collisions

Collisions! Different offsets Next subscripts to try
H(1) =1 Hy,(1) =2 H(l) =1+2
H,6) =1 Hy,6) =1 H®6) =1+1
H, (1) =1 H,(11) =3 H(11)=1+3

External Chaining

m Each slot in table (array) holds unlimited number of entries
= Each slot contains a list data structure (e.g. array, linked list)
= Each list should be short (balanced BST would be overkill)
= Deleting is simple
= No elements hashed can be greater than size of array

= Avoids secondary clustering

4/3/14

10

