
4/1/14	

1	

+

Lecture 27: Concurrency

Slides adapted from Dan Grossman

+
Today

n Reading
n  P&C Sections 8 and 9

n Objectives
n  Design for this week’s homework

n  Deadlocks

n  (Maps)

n Announcements
n  Quiz on Friday covering P&C

4/1/14	

2	

+

For every memory location (e.g., object field) in your program,
you must obey at least one of the following:
1.  Thread-local: Only one thread accesses it
2.  Immutable: (After initialization) Only read never written
3.  Synchronized: Locks used to ensure no race conditions

Providing Safe Access

all memory
thread-local

memory immutable
memory

need
synchronization

+
Guidelines for unavoidable
concurrency

Use threads to ensure no simultaneous read/write or write/write
operations to the same field

For each location needing synchronization, have a lock that is always
held when reading or writing the location

Start with coarse-grained locking and move to fine-grained locking
only if contention becomes an issue.

Do not do expensive computations or I/O in critical sections, but also
don’t introduce race conditions

Use built-in libraries whenever they meet your needs

4/1/14	

3	

+
Deadlock

What locks are held at a.deposit(amt)?

public class BankAccount{ !
!...!
!synchronized void withdraw(int amount) {...}!
!synchronized void deposit(int amount) {...}!
!!
!synchronized void transferTo(int amt, BankAccount a)
!{!
! !this.withdraw(amt);!
! !a.deposit(amt);!
!}!

}!

+
The Deadlock

acquire lock for x
do withdraw from x

block on lock for y

acquire lock for y
do withdraw from y

block on lock for x

Thread 1: x.transferTo(1,y)

Ti
m

e

n  Suppose we have separate threads each transferring to each
other’s account

Thread 2: y.transferTo(1,x)

4/1/14	

4	

+
Deadlock

n A deadlock occurs when there are threads T1, …, Tn
such that:
n  Ti is waiting for a resource held by Ti+1 for i=1,..,n-1

n  Tn is waiting for a resource held by T1

n A cycle of waiting
n  Can formalize as a graph of dependencies with cycles bad

n Deadlock avoidance in programming amounts to
techniques to ensure a cycle can never arise

+
Solving Deadlocks

Options for avoiding deadlocks:

n No thread ever holds more than one lock

n Define globally agreed upon order for locks

n  Dining Philosopher’s Problem (Dijkstra)

n  Every bank account has unique number – acquire lock for

lower ordered bank accounts first

n Sometimes can’t guarantee no deadlock

4/1/14	

5	

+
Solving Deadlocks

synchronized void transferTo(int amt, BankAccount a){!
!if(this.acctNumber < a.acctNumber) {!
! !synchronized(this){!
! ! !synchronized(a) {!
! ! ! !this.withdraw(amt);!
! ! ! !a.deposit(amt);!
! ! !}!
! !}!
!}else{!
! !synchronized(a) {!
! ! !synchronized(this) {!
! ! ! !this.withdraw(amt);!
! ! ! !a.deposit(amt);!
! ! !}!
! !}!
!}!

}!

+
A Last Example

From the Java standard library

class StringBuffer { // a mutable String!
 private int count;!
 private char[] value;!
 …!
 synchronized append(StringBuffer sb) {!
 int len = sb.length();!
 if(this.count + len > this.value.length)!
 this.expand(…);!
 sb.getChars(0,len,this.value,this.count);!
 }!
 synchronized getChars(int x, int, y, !
 char[] a, int z) {!
 “copy this.value[x..y] into a starting at z”!
 }!
}!

4/1/14	

6	

+
Two problems

n  Problem #1: Lock for sb is not held between calls to sb.length
and sb.getChars
n  The variable sb could get longer
n  Would cause append to throw an ArrayBoundsException!

n  Problem #2: Deadlock potential if two threads try to append in
opposite directions

n  Not easy to fix both problems without extra copying:
n  Do not want unique ids on every StringBuffer!
n  Do not want one lock for all StringBuffer objects

n  Actual Java library fixed neither (left code as is; changed javadoc)
n  Up to clients to avoid such situations with own protocols

+
Concurrency summary

n  Correctly and efficiently controlling access to shared resources
n  Benefits
n  Race conditions: bad interleavings, data races
n  Critical sections too small
n  Deadlocks

n  Requires synchronization
n  Locks for mutual exclusion

n  Guidelines for correct use help avoid common pitfalls

n  Getting shared memory correct is hard!

