
3/31/14	

1	

+

Lecture 26: Concurrency

Slides adapted from Dan Grossman

+
Today

n Reading
n  P&C Section 7

n Objectives
n  Race conditions

n Announcements
n  Quiz on Friday

3/31/14	

2	

+

3/21/14 2:54 PMGoogle Maps

Page 1 of 1https://www.google.com/maps/@55.7911827,-96.5439062,3z

Map data ©2014 Google, INEGI 1000 mi

This week’s programming
assignment

n  Answer population queries using data from the 2000 U.S.
census

8 columns, 6 rows

n  User inputs numRows, numCols

n  Query consists of corners of a
rectangle. Returns population
inside query rectangle

n  Timing and writeup required

n  Wednesday we will discuss class
design. Highly recommended you
work with a partner!

+
Concurrency

n  Correctly and efficiently controlling access by multiple
threads to shared resources

n  Programming model
n  Multiple uncoordinated threads

n  Sharing memory locations

n  Interleaved operations

3/31/14	

3	

+
Re-entrant Locks in Java

n  Re-entrant locks implemented via synchronized blocks

n  synchronized acquires the lock (blocks until available)

n  expression must evaluate to a non-null object

n  statements execute when lock acquired

n  lock is released when execution leaves block for any reason

synchronized (expression) { statements}!

+
Recap: Bank Account (Best code)

public class BankAccount{ !
!private int balance = 0;!

!
!synchronized int getBalance(){!
! !return balance;!
!}!
!synchronized void setBalance(int x) {!
! !balance = x;!
!}!
!synchronized void withdraw(int amount) {!
! !int b = getBalance();!
! !if(amount > b)!
! ! !throw new WithdrawTooLargeException();!
! !setBalance(b-amount);!
!}!
!...!

}!

3/31/14	

4	

+
Race Conditions

n  A race condition occurs when the computation result depends
on the order that the threads execute (how threads are
interleaved)

n  Such bugs (by definition) do not exist in sequential programs

n  Typically, problem is one thread “sees” invariant-violating
intermediate state produced by another thread

n  Two types of race conditions
n  Bad interleavings
n  Data races – simultaneous read/write or write/write access to same

memory location

+
Bad Interleaving Example: peek

class Stack<E> {!
!private E[] array;! // array to hold elements!
!private int index; // points to next open slot!

!
!Stack(int size){ array = (E[]) new Object[size]; }!

!
!synchronized boolean isEmpty() {!
!! !return index == 0;!
!}!
!synchronized void push(E val) {!
!! !if(index == array.length) throw new ...;!
!! !array[index++] = val;!
!}!
!synchronized E pop() {!
!! !if(index == 0) throw new ...;!
!! !return array[--index];!
!}!

}!

3/31/14	

5	

+
Bad Interleaving Example: peek

n  Implementing peek from a different class

n  Forgot to add synchronization!

public class C{!
!static <E> E myPeekHelperWrong(Stack<E> s) {!
!! !E ans = s.pop();!
!! !s.push(ans);!
!! !return ans;!
!} !

}!

+
Bad Interleaving Example: peek

n  peek has no overall effect on the shared data
n  It is a “reader” not a “writer”

n  Overall result is same stack if no interleaving

n  But the way it is implemented creates an inconsistent
intermediate state
n  Even though calls to push and pop are synchronized so there are

no data races on the underlying array

n  This intermediate state should not be exposed
n  Leads to several bad interleavings

3/31/14	

6	

+
One bad interleaving: peek and
push
n  Property we want: values are returned from pop in LIFO

order

n  With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

push(x)

push(y)

E e = pop()

Ti
m

e

Thread 1 (peek) Thread 2

+
The solution

n  peek needs synchronization to disallow interleavings
n  The key is to make a larger critical section

n  Re-entrant locks allow calls to push and pop

n  Just because all changes to state done within synchronized
pushes and pops doesn’t prevent exposing intermediate state

public class C{!
!static <E> E myPeekHelperWrong(Stack<E> s) {!
!! !synchronized(s) {! ! !!
!! ! !E ans = s.pop();!
!! ! !s.push(ans);!
!! ! !return ans;!
!! !}!
!} !

}!

3/31/14	

7	

+
Race conditions

n Examples of data races in the text

n Lesson: Do not introduce a data race even if every
interleaving you can think of is correct

n Avoiding race conditions on shared resources is
difficult

n  Decades of bugs have led to some conventional wisdom:
general techniques that are known to work

+

For every memory location (e.g., object field) in your program,
you must obey at least one of the following:
1.  Thread-local: Only one thread accesses it
2.  Immutable: (After initialization) Only read never written
3.  Synchronized: Locks used to ensure no race conditions

Providing Safe Access

all memory
thread-local

memory immutable
memory

need
synchronization

3/31/14	

8	

+
Thread-local

Whenever possible, do not share resources

n  Easier to have each thread have its own thread-local copy of a
resource than to have one with shared updates

n  This is correct only if threads do not need to communicate
through the resource
n  That is, multiple copies are a correct approach
n  Example: Random objects

n  Note: Because each call-stack is thread-local, never need to
synchronize on local variables

In typical concurrent programs, the vast majority of objects should
be thread-local: shared-memory should be rare – minimize it

+
Immutable

Whenever possible, do not update objects
n  Make new objects instead

n  One of the key tenets of functional programming
n  Functional programming studied in 52

n  If a location is only read, never written, then no
synchronization is necessary!
n  Simultaneous reads are not races and not a problem

In practice, programmers usually over-use mutation – minimize it

3/31/14	

9	

+
Guidelines for unavoidable
concurrency

n  After minimizing the amount of memory that is (1) thread-
shared and (2) mutable, we need guidelines for how to use
locks to keep other data consistent

n  Guideline #0: Use threads to ensure no simultaneous read/

write or write/write operations to the same field

n  Necessary but not sufficient (peek example)

+
Consistent Locking

n  Guideline #1: For each location needing synchronization, have
a lock that is always held when reading or writing the location

n  We say the lock guards the location

n  The same lock can (and often should) guard multiple locations

n  Clearly document in comments the guard for each location

n  In Java, the guard is often the object containing the location

n  this inside the object’s methods
n  But also often guard a larger structure with one lock to ensure

mutual exclusion on the structure

3/31/14	

10	

+
Lock Granularity

n  Guideline #2: Start with coarse-grained and move to fine-grained only
if contention becomes an issue.

n  Coarse-grained locking
n  Fewer locks – more objects per lock (e.g. one lock for all bank accounts)

n  Simpler to implement

n  Faster/easier to implement operations that access multiple locations

n  Can lead to contention among threads – threads blocked waiting for lock

n  Fine-grained locking
n  More locks – i.e. fewer objects per lock

n  May need to acquire multiple locks

n  Alas, will probably lead to bugs!

+
Critical-section granularity

n  Guideline #3: Do not do expensive computations or I/O in
critical sections, but also don’t introduce race conditions

n  Critical-section size is orthogonal to lock granularity
n  How much work to do while holding lock(s)

n  If critical sections run for too long:
n  Performance loss because other threads are blocked

n  If critical sections are too short:
n  Too short can lead to bad interleavings

3/31/14	

11	

+
Atomicity

n  Guideline #4: Think in terms of what operations need to be
atomic
n  Make critical sections just long enough to preserve atomicity

n  Then design the locking protocol to implement the critical sections
correctly

n  An operation is atomic if no other thread can see it partly
executed
n  Atomic as in “appears indivisible”

+
Don’t roll your own

n  Guideline #5: Use built-in libraries whenever they meet your
needs
n  ConcurrentHashMap written by world experts

n  Vector versus ArrayList!

