
3/25/14	  

1	  

+

Lecture 25: Concurrency 

+
Today 

n Reading 
n P&C Section 6 

n Objectives 
n Concurrency 



3/25/14	  

2	  

+
Concurrency 

n  Correctly and efficiently controlling access by multiple 
threads to shared resources 

n  Programming model 
n  Multiple uncoordinated threads 

n  Sharing memory locations 

n  Interleaved operations 

n  Contrast with Divide and Conquer Parallelism  
n  Each thread had memory only it accessed 

n  Thread blocked until helper threads finished 

+
Concurrency 

n  Downsides of concurrency 
n  behavior depends on order threads access shared resources 
n  leads to seemingly non-deterministic behavior 
n  hard to replicate bugs 
 

n  Benefits of concurrency 
n  There are other models of parallelism that require concurrent access 
n  Responsiveness – one thread listens for I/O events while another 

does computation 
n  Processor utilization – schedule threads while waiting for I/O 

completion 
n  Failure isolation – One thread fails, others can keep working 



3/25/14	  

3	  

+
Example: Bank Account 

public class BankAccount{ !
!private int balance = 0;!

!
!int getBalance(){!
! !return balance;!
!}!
!void setBalance(int x) {!
! !balance = x;!
!}!
!void withdraw(int amount) {!
! !int b = getBalance();!
! !if(amount > b)!
! ! !throw new WithdrawTooLargeException();!
! !setBalance(b-amount);!
!}!
!...!

}!

+
Interleaved operations 

n  Two threads withdraw $100 from same bank account with 
balance of $150 

class BankAccount {
private int balance = 0;
int getBalance() {
return balance;

}
void setBalance(int x) {
balance = x;

}
void withdraw(int amount) {
int b = getBalance();
if(amount > b)

throw new WithdrawTooLargeException();
setBalance(b - amount);

}
// ... other operations like deposit, etc.

}

This code is correct in a single-threaded program. But suppose we have two threads, one calls x.withdraw(100)
and the other calls y.withdraw(100). “Most likely” these calls are not a problem:

• If x and y are not aliases, meaning they refer to distinct bank accounts, then there is no problem because the
calls are using different memory. This is like two cooks using different pots at the same time.

• If one call finishes before the other starts, then the behavior is like in a sequential program. This is like one cook
using a pot and then another cook using the same pot. When this is not the case, we say the calls interleave.
Note that interleaving can happen even with one processor because a thread can be pre-empted at any point,
meaning the thread scheduler stops the thread and runs another one.

So let us consider two interleaved calls to withdraw on the same bank account. We will “draw” interleavings using
a vertical timeline (earlier operations closer to the top) with each thread in a separate column. There are many possible
interleavings since even the operations in a helper method like getBalance can be interleaved with operations in other
threads. But here is one incorrect interleaving. Assume initially the balance field holds 150 and both withdrawals are
passed 100.

Thread 1 Thread 2
-------- --------
int b = getBalance();

int b = getBalance();
if(amount > b)
throw new ...;

setBalance(b - amount);
if(amount > b)

throw new ...;
setBalance(b - amount);

If this interleaving occurs, the resulting balance will be 50 and no exception will be thrown. But two withdraw
operations were supposed to occur — there should be an exception. Somehow we “lost” a withdraw, which would not
make the bank happy. The problem is that balance changed after Thread 1 retrieved it and stored it in b.

When first learning concurrent programming there is a natural but almost-always WRONG attempted fix to this
sort of problem. It is tempting to rearrange or repeat operations to try to avoid using “stale” information like the value
in b. Here is a WRONG idea:

void withdraw(int amount) {
if(amount > getBalance())

37

ti
m

e 

lost a withdrawal! 



3/25/14	  

4	  

+
Mutual Exclusion 

n  A critical section is a piece of code that accesses a shared 
resource (e.g. the withdraw method) 

n  Mutual exclusion – only allow one thread in the critical 
section at a time 

n  Idea: Do Not Disturb 
n  Hang a “Do Not Disturb” sign when enter a 

    critical section so other threads know 

n  Remove sign when finished 

n  Other threads wait until sign is removed 

 

+
Mutual Exclusion Locks 

n Abstract data type that implement mutual exclusion 
n  new creates a new lock that is not held 

n  acquire blocks until the lock is not held and then sets the lock 
to held and returns!

n  release sets lock to not held 
 

n Locks in Java 
n  No explicit lock object as in other languages 

n  Instead every object is a lock that can be acquired and released 

n  Locks are re-entrant, i.e. a thread can re-acquire a lock it already holds 



3/25/14	  

5	  

+
Re-entrant Locks in Java 

n  Re-entrant locks implemented via synchronized blocks 

 
 

n  synchronized acquires the lock (blocks until available) 

n  expression must evaluate to a non-null object 

n  statements execute when lock acquired 

n  lock is released when execution leaves block for any reason 

synchronized (expression) { statements}!

+
Bank Account (Correct code) 

public class BankAccount{ !
!private int balance = 0;!
!private Object lk = new Object();!
!int getBalance(){!
! !synchronized(lk) { return balance; }!
!}!
!void setBalance(int x) {!
! !synchronized(lk){ balance = x; }!
!}!
!void withdraw(int amount) {!
! !synchronized(lk){!
! ! !int b = getBalance();!
! ! !if(amount > b)!
! ! ! !throw new WithdrawTooLargeException();!
! ! !setBalance(b-amount);!
! !}!
!}!
!...!

}!

re-entrant 
locks 

lock released 
if exception 



3/25/14	  

6	  

+
Bank Account (Better code) 

public class BankAccount{ !
!private int balance = 0;!

!
!int getBalance(){!
! !synchronized(this) { return balance; }!
!}!
!void setBalance(int x) {!
! !synchronized(this){ balance = x; }!
!}!
!void withdraw(int amount) {!
! !synchronized(this){!
! ! !int b = getBalance();!
! ! !if(amount > b)!
! ! ! !throw new WithdrawTooLargeException();!
! ! !setBalance(b-amount);!
! !}!
!}!
!...!

}!

+
Bank Account (Best code) 

public class BankAccount{ !
!private int balance = 0;!

!
!synchronized int getBalance(){!
! !return balance;!
!}!
!synchronized void setBalance(int x) {!
! !balance = x;!
!}!
!synchronized void withdraw(int amount) {!
! !int b = getBalance();!
! !if(amount > b)!
! ! !throw new WithdrawTooLargeException();!
! !setBalance(b-amount);!
!}!
!...!

}!



3/25/14	  

7	  

+
Race Conditions 

n  A race condition occurs when the computation result depends 
on the order that the threads execute (how threads are 
interleaved) 

n  Such bugs (by definition) do not exist in sequential programs 

n  Typically, problem is one thread “sees” invariant-violating 
intermediate state produced by another thread 

n  Two types of race conditions 
n  Bad interleavings 
n  Data races – simultaneous read/write or write/write access to same 

memory location 

+
Bad Interleaving Example: peek 

class Stack<E> {!
!private E[] array;! // array to hold elements!
!private int index; // points to next open slot!

!
!Stack(int size){ array = (E[]) new Object[size]; }!

!
!synchronized boolean isEmpty() {!
!! !return index == 0;!
!}!
!synchronized void push(E val) {!
!! !if(index == array.length) throw new ...;!
!! !array[index++] = val;!
!}!
!synchronized E pop() {!
!! !if(index == 0) throw new ...;!
!! !return array[--index];!
!}!

}!



3/25/14	  

8	  

+
Bad Interleaving Example: peek 

n  Implementing peek from a different class 

n  Forgot to add synchronization! 

public class C{!
!static <E> E myPeekHelperWrong(Stack<E> s) {!
!! !E ans = s.pop();!
!! !s.push(ans);!
!! !return ans;!
!} !

}!

+
Bad Interleaving Example: peek 

n  peek has no overall effect on the shared data 
n  It is a “reader” not a “writer” 

n  Overall result is same stack if no interleaving 

n  But the way it is implemented creates an inconsistent 
intermediate state 
n  Even though calls to push and pop are synchronized so  there are 

no data races on the underlying array 

n  This intermediate state should not be exposed 
n  Leads to several bad interleavings 



3/25/14	  

9	  

+
One bad interleaving: peek and 
push 
n  Property we want: values are returned from pop in LIFO 

order 

n  With peek as written, property can be violated – how? 

 
E ans = pop(); 
 
push(ans); 
 
return ans; 

push(x) 
 
push(y) 
 
E e = pop() 
 

Ti
m

e 

Thread 1 (peek) Thread 2 

+
The solution 

n  peek needs synchronization to disallow interleavings 
n  The key is to make a larger critical section 

n  Re-entrant locks allow calls to push and pop 

n  Just because all changes to state done within synchronized 
pushes and pops doesn’t prevent exposing intermediate state 

public class C{!
!static <E> E myPeekHelperWrong(Stack<E> s) {!
!! !synchronized(s) {! ! !!
!! ! !E ans = s.pop();!
!! ! !s.push(ans);!
!! ! !return ans;!
!! !}!
!} !

}!



3/25/14	  

10	  

+
Race conditions 

n Examples of data races in the text 

n Lesson: Do not introduce a data race even if every 
interleaving you can think of is correct 

n Avoiding race conditions on shared resources is 
difficult 

n  Decades of bugs have led to some conventional wisdom: 
general techniques that are known to work 

+

For every memory location (e.g., object field) in your program, 
you must obey at least one of the following: 
1.  Thread-local: Only one thread accesses it 
2.  Immutable: (After initialization) Only read never written 
3.  Synchronized: Locks used to ensure no race conditions 

Providing Safe Access 

all memory 
thread-local 

memory immutable 
memory 

need  
synchronization 



3/25/14	  

11	  

+
Extra Slides 

+
Work and Span in terms of DAG 

n  Recall: TP = running time if there are P processors available 

n  Work (T1): How long it takes to run on 1 processor 

n  Corresponds to the number of nodes in the DAG 

n  O(N) for simple maps and reductions 

n  Span (T∞) : How long it would take with infinite processors 
n  Length of the longest path in the DAG 

n  Infinite processors must still wait for earlier results to be done 

n  O(log N) for simple maps and reductions 



3/25/14	  

12	  

+
Speed-Up 

n  Speed-up on P processors is defined as T1 / TP   

n  If speed-up is P as we vary P, we call it perfect linear speed-up 
n  Perfect linear speed-up means doubling P halves running time 

n  Usually our goal – hard to get in practice 

n  Parallelism is the maximum possible speed-up: T1 / T ∞  

n  At some point, adding processors won’t help 

n  Where that point is depends on the span 
 

+
Examples 

TP  =  O((T1 / P) + T ∞) 

n  In the algorithms seen so far (e.g., sum an array): 
n   T1 = O(n) 
n   T ∞= O(log n) 

n  So expect (ignoring overheads): TP  =  O(n/P + log n) 
 

n  Suppose instead: 
n   T1 = O(n2) 
n   T ∞= O(n) 

n  So expect (ignoring overheads): TP  =  O(n2/P + n) 

  



3/25/14	  

13	  

+
Amdahl’s Law (derive on board) 

n  Provides upper-bound on speedup given that only part of 
algorithm can be parallelized 

n  Amdahl’s Law states: 

 

n  where S is the percentage of the algorithm that cannot be 
parallelized 

n  Corollary of Amdahl’s Law: 

 

X = {x1, x2, . . . , xN

} where x
i

2 [0, 1]M

Z = {z1, z2, . . . , zN} where z
i

2 {1, 2}
✓ = {↵, q1, q2}

z
i

⇠ Discrete(↵, 1� ↵)

x
i

|z
i

⇠ Multivariate Bern(q
zi)

p(x
i

|z
i

= k) =
MY

j=1

qxi
km

· (1� q
km

)(1�xi)

!i

k

= p(z
i

= k|x
i

, ✓t)

/ p(x
i

|qt
k

)p(z
i

= k|↵t)

↵t+1
k

=
1

N

X

i

!i

k

qt+1
km

=

P
i

!i

k

I(x
im

= 1)P
i

!i

k

argmax
✓

Q(✓|✓t)  argmax
✓

log p(X|✓)

U([s0, s1, s2, . . .]) = �0R(s0) + �1R(s1) + �2R(s2) + . . .

=
1X

t=0

�tR(s
t

)

for � 2 [0, 1]

U⇡(s) = E

 1X

t=0

�tR(S
t

)

�

⇡⇤ = argmax
⇡

U⇡(s)

U
i

(s) = U⇡i(s) = E

 1X

t=0

�tR(S
t

)

�

⇡
i+1(s) = argmax

a2A(s)

X

s

0

p(s0|s, a) U
i

(s0)

V ⇤(s) = max
a

Q⇤(s, a)

Q⇤(s, a) =
X

s

0

p(s0|a, s)

R(s) + �V ⇤(s0)

�

V ⇤(s) = max
a

X

s

0

p(s0|a, s)

R(s) + �V ⇤(s0)

�

T1

T
P

=
1

S + 1�S

P

13

T1

T
P

=
1

S + 1�S

P

T1

T1
=

1

S

14


