
3/23/14!

1!

+!

Lecture 24:
More Parallel Programming

+!
Today

n Reading
n P&C Sections 4 and 5

n Objectives
n Finish Divide and Conquer Parallelism

n Work and span

n Amdahl’s Law

3/23/14!

2!

+!
Announcements

n Start HW assignment and come on Wednesday ready
to discuss GameTree class

n No quiz this Friday (Cesar Chavez Day)

n One-on-one tutoring through the QSC

n The tutor is Sarah!
n Make an appointment

n Review midterms in lab on Wednesday

+!
Recap: Divide and Conquer
Parallelism

n Running example: summing an array of integers

n Problems encountered
n Don’t want to hard code the number of threads

n Use all/only the processors available to us now

n Load imbalance

n Solution
n Use lots of threads! Much more than the number of

processors
n Each thread does a little bit of work

3/23/14!

3!

+!
Final Attempt

n Divide-and-conquer Parallelism!
n Change our algorithm
n Use parallelism for the recursive calls

+! +! +! +! +! +! +! +!

+! +! +! +!

+! +!
+!

+!
Divide and Conquer Parallelism

class SumThread extends java.lang.Thread {!
 int lo; int hi; int[] arr; // arguments!
 int ans = 0; // result!
 SumThread(int[] a, int l, int h) { … }!
 public void run(){ // override!
 if(hi – lo < SEQUENTIAL_CUTOFF)!
 for(int i=lo; i < hi; i++)!
 ans += arr[i];!
 else {!
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);!
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);!
 left.start();!
 right.start();!
 left.join(); // don’t move this up a line – why?!
 right.join();!
 ans = left.ans + right.ans;!
 }!
 }!
}!

3/23/14!

4!

+!
Divide and Conquer Parallelism

n Divide array in half with one thread per half
n There is a distinction between work and time when we

work in parallel

n ~2N threads each doing O(1) work results in O(N)
work

n How much time does it take P processors to do O(N)
work?

+!
Divide and Conquer Parallelism

n How much time does it take P processors to do
O(N) work?
n  If we have O(N) processors, run time is O(logN) because

each level is done in parallel

n If we have P processors, takes O(N/P + logN) time

3/23/14!

5!

+!
Divide and Conquer Parallelism

n Final improvements
n Choose cutoff value: below cutoff switch to sequential

programming

n Don’t create two threads: create one thread and have
the calling thread do the other half of the work

+!
Divide and Conquer Parallelism

class SumThread extends java.lang.Thread {!
 static int SEQUENTIAL_CUTOFF = 1000;!
 int lo; int hi; int[] arr; // arguments!
 int ans = 0; ! ! !// result!
!
 SumThread(int[] a, int l, int h) { … }!
!
 public void run(){ // override!
 if(hi – lo < SEQUENTIAL_CUTOFF)!
 for(int i=lo; i < hi; i++)!
 ans += arr[i];!
 else {!
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);!
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);!
 left.start();!
 right.run(); // call run instead of start!!
 left.join(); // don’t move this up a line – why?!

! ans = left.ans + right.ans;!
 }!
 }!
}!

3/23/14!

6!

+!
Java ForkJoin Framework

n  In the end, Java threads are still to heavyweight!

n  Use java.util.concurrent package available in Java 7
standard libraries

n  To use create a ForkJoinPool!

n  ForkJoin documentation recommends 500-50000 basic
operations per thread for optimal performance guarantees

+!
Java ForkJoin Framework

class SumArray extends RecursiveTask<Integer> {
 int lo; int hi; int[] arr; // arguments
 SumArray(int[] a, int l, int h) { … }
 protected Integer compute(){// return answer
 if(hi – lo < SEQUENTIAL_CUTOFF) {
 int ans = 0;
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 return ans;
 } else {
 SumArray left = new SumArray(arr,lo,(hi+lo)/2);
 SumArray right= new SumArray(arr,(hi+lo)/2,hi);
 left.fork();
 int rightAns = right.compute();
 int leftAns = left.join();
 return leftAns + rightAns;
 }
 }
}
static final ForkJoinPool fjPool = new ForkJoinPool();
int sum(int[] arr){
 return fjPool.invoke(new SumArray(arr,0,arr.length));
}

3/23/14!

7!

+!
Different terms, same basic idea

Don’t subclass Thread Do subclass RecursiveTask<V>

Don’t override run Do override compute

Do not use an ans field Do return a V from compute

Don’t call start Do call fork

Don’t just call join Do call join which returns answer

Don’t call run to hand-optimize Do call compute to hand-optimize

Don’t have a topmost call to run Do create a pool and call invoke

See the handouts page for a link to:

 “A Beginner’s Introduction to the ForkJoin Framework”

13!

+!
Reductions

n  Computations of this form are called reductions

n  Reduce collection to a single answer via an associative operator
n  Examples: max, count, leftmost, rightmost, sum, product, …

n  Non-examples: median, subtraction, exponentiation

3/23/14!

8!

+!
Maps (Data Parallelism)

n  A map operates on each element of a collection independently
to create a new collection of the same size
n  No combining results

n  Exercise: how could you code up vector addition using
ForkJoin Framework?

int[] vector_add(int[] arr1, int[] arr2){!
 assert (arr1.length == arr2.length);!
 result = new int[arr1.length];!
 FORALL(i=0; i < arr1.length; i++) {!
 result[i] = arr1[i] + arr2[i];!
 }!
 return result;!
}!

+!
Maps and Reductions

n  Maps and reductions are the “workhorses” of parallel
programming

n  Learn to recognize when an algorithm can be written in terms of
maps and reductions

n  Programming them becomes “trivial” with a little practice

n  Exactly like sequential for-loops seem second-nature

n  Google’s MapReduce framweork

3/23/14!

9!

+!
Analyzing ForkJoin Algorithms

n  Focus on efficiency (instead of correctness)
n  Want asymptotic bounds

n  Analyze the algorithm for any number of processors

n  ForkJoin Framework guarantees expected run-time performance is
asymptotically optimal for given number of processors

n  So we can analyze algorithms assuming this guarantee

+!
Work and Span

n  Let TP be the running time if there are P processors available

n  Two key measures of run-time for fork-join parallelism:

n  Work (T1): How long it takes to run on 1 processor

n  “Sequentialize” the recursive forking algorithm

n  Span (T∞) : How long it would take with infinite processors
n  The longest dependence-chain

n  Example: O(log n) for summing an array

n  Notice having > n/2 processors is no additional help

3/23/14!

10!

+!
Program Execution as a DAG

n  A program execution using fork and join can be viewed
as a DAG
n  Nodes: Pieces of O(1) work

n  Edges: Source must finish before destination starts

n  A fork “ends a node” and makes
two outgoing edges

n  A join “ends a node” and makes a

node with two incoming edges

+!
Summing an array of integers

base
case

divide

combine
results

balanced
binary tree

balanced
binary tree

3/23/14!

11!

+!
Work and Span in terms of DAG

n  Recall: TP = running time if there are P processors available

n  Work (T1): How long it takes to run on 1 processor

n  Corresponds to the number of nodes in the DAG

n  O(N) for simple maps and reductions

n  Span (T∞) : How long it would take with infinite processors
n  Length of the longest path in the DAG

n  Infinite processors must still wait for earlier results to be done

n  O(log N) for simple maps and reductions

+!
Speed-Up

n  Speed-up on P processors is defined as T1 / TP

n  If speed-up is P as we vary P, we call it perfect linear speed-up
n  Perfect linear speed-up means doubling P halves running time

n  Usually our goal – hard to get in practice

n  Parallelism is the maximum possible speed-up: T1 / T ∞

n  At some point, adding processors won’t help

n  Where that point is depends on the span

3/23/14!

12!

+!
ForkJoin provides optimal TP

n  ForkJoin guarantees TP = O((T1 / P) + T ∞)

n  No implementation can be better than O(T ∞)

n  No implementation with P processors can be better than O(T1/P)

n  First term dominates for small P, second for large P

n  The ForkJoin Framework gives an expected-time guarantee of
asymptotically optimal!
n  Guarantee requires a few assumptions about your code…

+!
Division of responsibility

n  Our job as ForkJoin Framework users:
n  Pick a good algorithm, write a program
n  All threads do approximately equal amount of work
n  All threads do small but not tiny amount of work

n  The framework-writer’s job:
n  Assign work to available processors to avoid idling

n  Let framework-user ignore all scheduling issues
n  Keep constant factors low
n  Give the expected-time optimal guarantee assuming framework-

user did his/her job

TP = O((T1 / P) + T ∞)

3/23/14!

13!

+!
Examples

TP = O((T1 / P) + T ∞)

n  In the algorithms seen so far (e.g., sum an array):
n  T1 = O(n)
n  T ∞= O(log n)

n  So expect (ignoring overheads): TP = O(n/P + log n)

n  Suppose instead:
n  T1 = O(n2)

n  T ∞= O(n)

n  So expect (ignoring overheads): TP = O(n2/P + n)

+!
Amdahl’s Law (derive on board)

n  Provides upper-bound on speedup given that only part of
algorithm can be parallelized

n  Amdahl’s Law states:

n  where S is the proportion of the algorithm that cannot be
parallelized

n  Corollary of Amdahl’s Law:

X = {x1, x2, . . . , xN

} where x
i

2 [0, 1]M

Z = {z1, z2, . . . , zN} where z
i

2 {1, 2}
✓ = {↵, q1, q2}

z
i

⇠ Discrete(↵, 1� ↵)

x
i

|z
i

⇠ Multivariate Bern(q
zi)

p(x
i

|z
i

= k) =
MY

j=1

qxi
km

· (1� q
km

)(1�xi)

!i

k

= p(z
i

= k|x
i

, ✓t)

/ p(x
i

|qt
k

)p(z
i

= k|↵t)

↵t+1
k

=
1

N

X

i

!i

k

qt+1
km

=

P
i

!i

k

I(x
im

= 1)P
i

!i

k

argmax
✓

Q(✓|✓t)  argmax
✓

log p(X|✓)

U([s0, s1, s2, . . .]) = �0R(s0) + �1R(s1) + �2R(s2) + . . .

=
1X

t=0

�tR(s
t

)

for � 2 [0, 1]

U⇡(s) = E

 1X

t=0

�tR(S
t

)

�

⇡⇤ = argmax
⇡

U⇡(s)

U
i

(s) = U⇡i(s) = E

 1X

t=0

�tR(S
t

)

�

⇡
i+1(s) = argmax

a2A(s)

X

s

0

p(s0|s, a) U
i

(s0)

V ⇤(s) = max
a

Q⇤(s, a)

Q⇤(s, a) =
X

s

0

p(s0|a, s)

R(s) + �V ⇤(s0)

�

V ⇤(s) = max
a

X

s

0

p(s0|a, s)

R(s) + �V ⇤(s0)

�

T1

T
P

=
1

S + 1�S

P

13

T1

T
P

=
1

S + 1�S

P

T1

T1
=

1

S

14

3/23/14!

14!

+!
Amdahl’s Law is Bad News!

n  Suppose 33% of a program’s execution is sequential
n  Then a billion processors won’t give a speedup over 3x

n  From 1980-2005, every 12 years gave 100x speedup
n  Now suppose in 12 years, clock speed is the same but you get

256 processors instead of 1

n  To get 100x speedup, we need

 100 ≤ 1 / (S + (1-S)/256)

 Which means S ≤ .0061 (i.e., 99.4% perfectly parallelizable)

+!
Take home message

Amdahl’s Law is a bummer!
n  Unparallelized parts become a bottleneck very quickly
n  But it doesn’t mean additional processors are worthless

n  We can find new parallel algorithms
n  Some things that seem sequential are actually parallelizable

n  We can change the problem or do new things
n  Example: Video games use tons of parallel processors

n  They are not rendering 10-year-old graphics faster
n  They are rendering more beautiful(?) monsters

