

Lecture 24:
More Parallel Programming

${ }^{+}$Today

\square Reading

- P\&C Sections 4 and 5
- Objectives
- Finish Divide and Conquer Parallelism
- Work and span
- Amdahl's Law

$+$
 Announcements

- Start HW assignment and come on Wednesday ready to discuss GameTree class
- No quiz this Friday (Cesar Chavez Day)
- One-on-one tutoring through the QSC

■ The tutor is Sarah!

- Make an appointment
- Review midterms in lab on Wednesday

Recap: Divide and Conquer Parallelism

■ Running example: summing an array of integers
\square Problems encountered

- Don't want to hard code the number of threads
- Use all/only the processors available to us now
- Load imbalance
- Solution
- Use lots of threads! Much more than the number of processors
- Each thread does a little bit of work

■ Divide-and-conquer Parallelism!

- Change our algorithm
- Use parallelism for the recursive calls

Divide and Conquer Parallelism

```
class SumThread extends java.lang.Thread {
    int lo; int hi; int[] arr; // arguments
    int ans = 0; // result
    SumThread(int[] a, int l, int h) { ... }
    public void run(){ // override
            if(hi - lo < SEQUENTIAL_CUTOFF)
            for(int i=lo; i < hi; i++)
                ans += arr[i];
            else {
            SumThread left = new SumThread(arr,lo,(hi+lo)/2);
            SumThread right= new SumThread(arr,(hi+lo)/2,hi);
            left.start();
            right.start();
            left.join(); // don't move this up a line - why?
            right.join();
            ans = left.ans + right.ans;
        }
    }
}
```


Divide and Conquer Parallelism

■ Divide array in half with one thread per half

- There is a distinction between work and time when we work in parallel
- $\sim 2 \mathrm{~N}$ threads each doing $\mathrm{O}(1)$ work results in $\mathrm{O}(\mathrm{N})$ work
- How much time does it take P processors to do O(N) work?

Divide and Conquer Parallelism

■ How much time does it take P processors to do O(N) work?

- If we have $\mathrm{O}(\mathrm{N})$ processors, run time is $\mathrm{O}(\log \mathrm{N})$ because each level is done in parallel

■ If we have P processors, takes $\mathrm{O}(\mathrm{N} / \mathrm{P}+\log \mathrm{N})$ time

Divide and Conquer Parallelism

■ Final improvements

- Choose cutoff value: below cutoff switch to sequential programming
- Don't create two threads: create one thread and have the calling thread do the other half of the work

Divide and Conquer Parallelism

```
class SumThread extends java.lang.Thread {
    static int SEQUENTIAL_CUTOFF = 1000;
        int lo; int hi; int[] arr; // arguments
        int ans = 0; // result
        SumThread(int[] a, int l, int h) { ... }
        public void run(){ // override
            if(hi - lo < SEQUENTIAL_CUTOFF)
            for(int i=lo; i < hi; i++)
                ans += arr[i];
            else {
            SumThread left = new SumThread(arr,lo,(hi+lo)/2);
            SumThread right= new SumThread(arr,(hi+lo)/2,hi);
            left.start();
            right.run(); // call run instead of start!
            left.join(); // don't move this up a line - why?
            ans = left.ans + right.ans;
        }
    }
}
```


+ Java ForkJoin Framework

- In the end, Java threads are still to heavyweight!

■ Use java. util. concurrent package available in Java 7 standard libraries

- To use create a ForkJoinPool

■ ForkJoin documentation recommends 500-50000 basic operations per thread for optimal performance guarantees

```
* Java ForkJoin Framework
class SumArray extends RecursiveTask<Integer> {
    int lo; int hi; int[] arr; // arguments
    SumArray(int[] a, int l, int h) {...}
    protected Integer compute() {// return answer
        if(hi - lo < SEQUENTIAL CUTOFF) {
            int ans = 0;
            for(int i=lo;i < hi; i++)
                ans += arr[i];
            return ans;
        } else {
            SumArray left = new SumArray(arr,lo,(hi+lo)/2);
            SumArray right= new SumArray(arr,(hi+lo)/2,hi);
            left.fork();
            int rightAns = right.compute();
            int leftAns = left.join();
            return leftAns + rightAns;
        }
        }
}
static final ForkJoinPool fjPool = new ForkJoinPool();
int sum(int[] arr){
    return fjPool.invoke (new SumArray(arr,0,arr.length));
}
```


Different terms, same basic idea

Don't subclass Thread
Don't override run
Do not use an ans field
Don't call start
Don't just call join
Don't call run to hand-optimize Do call compute to hand-optimize
Don't have a topmost call to run Do create a pool and call invoke

See the handouts page for a link to:
"A Beginner's Introduction to the ForkJoin Framework"

Reductions

- Computations of this form are called reductions
- Reduce collection to a single answer via an associative operator
- Examples: max, count, leftmost, rightmost, sum, product, ...
- Non-examples: median, subtraction, exponentiation

+ Maps (Data Parallelism)

A map operates on each element of a collection independently to create a new collection of the same size

- No combining results
- Exercise: how could you code up vector addition using ForkJoin Framework?

```
int[] vector_add(int[] arr1, int[] arr2){
    assert (arr1.length == arr2.length);
    result = new int[arr1.length];
    FORALL(i=0; i < arr1.length; i++) {
        result[i] = arr1[i] + arr2[i];
    }
    return result;
}
```


${ }^{+}$Maps and Reductions

■ Maps and reductions are the "workhorses" of parallel programming

- Learn to recognize when an algorithm can be written in terms of maps and reductions
- Programming them becomes "trivial" with a little practice
- Exactly like sequential for-loops seem second-nature
- Google's MapReduce framweork

* Analyzing ForkJoin Algorithms

- Focus on efficiency (instead of correctness)
- Want asymptotic bounds
- Analyze the algorithm for any number of processors
- ForkJoin Framework guarantees expected run-time performance is asymptotically optimal for given number of processors
- So we can analyze algorithms assuming this guarantee

* Work and Span

- Let T_{P} be the running time if there are P processors available
- Two key measures of run-time for fork-join parallelism:

■ Work (T_{1}): How long it takes to run on l processor

- "Sequentialize" the recursive forking algorithm
- Span (T_{∞}) : How long it would take with infinite processors
- The longest dependence-chain
- Example: $O(\log n)$ for summing an array
- Notice having > $n / 2$ processors is no additional help

* Program Execution as a DAG

- A program execution using fork and join can be viewed as a DAG

- Nodes: Pieces of O(1) work
- Edges: Source must finish before destination starts

- A fork "ends a node" and makes two outgoing edges
- A join "ends a node" and makes a node with two incoming edges

Work and Span in terms of DAG

- Recall: $\mathrm{T}_{\mathrm{P}}=$ running time if there are P processors available
- Work $\left(T_{1}\right)$: How long it takes to run on 1 processor
- Corresponds to the number of nodes in the DAG
- O(N) for simple maps and reductions
- Span $\left(T_{\infty}\right)$: How long it would take with infinite processors
- Length of the longest path in the DAG
- Infinite processors must still wait for earlier results to be done
- $O(\log N)$ for simple maps and reductions

* Speed-Up

■ Speed-up on P processors is defined as $\mathrm{T}_{1} / \mathrm{T}_{\mathrm{P}}$

- If speed-up is P as we vary P, we call it perfect linear speed-up
- Perfect linear speed-up means doubling P halves running time
- Usually our goal - hard to get in practice
- Parallelism is the maximum possible speed-up: $\mathrm{T}_{1} / \mathrm{T}_{\infty}$
- At some point, adding processors won't help
- Where that point is depends on the span

${ }^{+}$ForkJoin provides optimal T_{P}

- ForkJoin guarantees $\mathrm{T}_{\mathrm{P}}=O\left(\left(\mathrm{~T}_{1} / \mathrm{P}\right)+\mathrm{T}_{\infty}\right)$
- No implementation can be better than $O\left(\mathrm{~T}_{\infty}\right)$
- No implementation with P processors can be better than $O\left(\mathrm{~T}_{1} / \mathrm{P}\right)$
- First term dominates for small P, second for large P
- The ForkJoin Framework gives an expected-time guarantee of asymptotically optimal!
- Guarantee requires a few assumptions about your code...

Division of responsibility

- Our job as ForkJoin Framework users:
- Pick a good algorithm, write a program
- All threads do approximately equal amount of work
- All threads do small but not tiny amount of work
- The framework-writer's job:
- Assign work to available processors to avoid idling
- Let framework-user ignore all scheduling issues
- Keep constant factors low
- Give the expected-time optimal guarantee assuming frameworkuser did his/her job

$$
\mathrm{T}_{\mathrm{P}}=O\left(\left(\mathrm{~T}_{1} / \mathrm{P}\right)+\mathrm{T}_{\infty}\right)
$$

Examples

$$
\mathrm{T}_{\mathrm{P}}=O\left(\left(\mathrm{~T}_{1} / \mathrm{P}\right)+\mathrm{T}_{\infty}\right)
$$

- In the algorithms seen so far (e.g., sum an array):
- $\mathrm{T}_{1}=O(n)$
- $\mathrm{T}_{\infty}=O(\log n)$
- So expect (ignoring overheads): $\mathrm{T}_{\mathrm{P}}=O(n / \mathrm{P}+\log n)$
- Suppose instead:
- $\mathrm{T}_{1}=O\left(n^{2}\right)$
- $\mathrm{T}_{\infty}=O(n)$
- So expect (ignoring overheads): $\mathrm{T}_{\mathrm{P}}=O\left(n^{2} / \mathrm{P}+n\right)$

'Amdahl's Law (derive on board)

- Provides upper-bound on speedup given that only part of algorithm can be parallelized
- Amdahl's Law states: $\quad \frac{T_{1}}{T_{P}}=\frac{1}{S+\frac{1-S}{P}}$
- where S is the proportion of the algorithm that cannot be parallelized
- Corollary of Amdahl's Law:

$$
\frac{T_{1}}{T_{\infty}}=\frac{1}{S}
$$

Amdahl's Law is Bad News!

- Suppose 33% of a program's execution is sequential
- Then a billion processors won't give a speedup over 3x
- From 1980-2005, every 12 years gave 100x speedup
- Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
- To get 100 x speedup, we need
$100 \leq 1 /(\mathrm{S}+(1-\mathrm{S}) / 256)$
Which means $\mathrm{S} \leq .0061$ (i.e., 99.4% perfectly parallelizable)

+ Take home message

Amdahl's Law is a bummer!

- Unparallelized parts become a bottleneck very quickly
- But it doesn't mean additional processors are worthless
- We can find new parallel algorithms
- Some things that seem sequential are actually parallelizable
- We can change the problem or do new things
- Example:Video games use tons of parallel processors
- They are not rendering 10-year-old graphics faster
- They are rendering more beautiful(?) monsters

