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+!

Lecture 24:   
More Parallel Programming 

+!
Today 

n Reading 
n P&C Sections 4 and 5 

n Objectives 
n Finish Divide and Conquer Parallelism 

n Work and span 

n Amdahl’s Law 
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+!
Announcements 

n Start HW assignment and come on Wednesday ready 
to discuss GameTree class 

 

n No quiz this Friday (Cesar Chavez Day) 

n One-on-one tutoring through the QSC 

n The tutor is Sarah! 
n Make an appointment 

n Review midterms in lab on Wednesday 

+!
Recap: Divide and Conquer 
Parallelism 

n Running example: summing an array of integers 

n Problems encountered 
n Don’t want to hard code the number of threads 

n Use all/only the processors available to us now 

n Load imbalance 

n Solution 
n Use lots of threads! Much more than the number of 

processors 
n Each thread does a little bit of work 
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+!
Final Attempt 

n Divide-and-conquer Parallelism! 
n Change our algorithm 
n Use parallelism for the recursive calls 

+! +! +! +! +! +! +! +!

+! +! +! +!

+! +!
+!

+!
Divide and Conquer Parallelism 

class SumThread extends java.lang.Thread {!
  int lo; int hi; int[] arr; // arguments!
  int ans = 0; // result!
  SumThread(int[] a, int l, int h) { … }!
  public void run(){ // override!
    if(hi – lo < SEQUENTIAL_CUTOFF)!
      for(int i=lo; i < hi; i++)!
        ans += arr[i];!
    else {!
      SumThread left = new SumThread(arr,lo,(hi+lo)/2);!
      SumThread right= new SumThread(arr,(hi+lo)/2,hi);!
      left.start();!
      right.start();!
      left.join(); // don’t move this up a line – why?!
      right.join();!
      ans = left.ans + right.ans;!
    }!
  }!
}!
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+!
Divide and Conquer Parallelism 

n Divide array in half with one thread per half 
n There is a distinction between work and time when we 

work in parallel 

n ~2N threads each doing O(1) work results in O(N) 
work 

n How much time does it take P processors to do O(N) 
work? 

+!
Divide and Conquer Parallelism 

n How much time does it take P processors to do 
O(N) work? 
n  If we have O(N) processors, run time is O(logN) because 

each level is done in parallel 

n If we have P processors, takes O(N/P + logN) time 
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+!
Divide and Conquer Parallelism 

n Final improvements 
n Choose cutoff value: below cutoff switch to sequential 

programming 

n Don’t create two threads: create one thread and have 
the calling thread do the other half of the work  

 

+!
Divide and Conquer Parallelism 

class SumThread extends java.lang.Thread {!
  static int SEQUENTIAL_CUTOFF = 1000;!
  int lo; int hi; int[] arr;  // arguments!
  int ans = 0; ! ! !// result!
!
  SumThread(int[] a, int l, int h) { … }!
!
  public void run(){ // override!
    if(hi – lo < SEQUENTIAL_CUTOFF)!
      for(int i=lo; i < hi; i++)!
        ans += arr[i];!
    else {!
      SumThread left = new SumThread(arr,lo,(hi+lo)/2);!
      SumThread right= new SumThread(arr,(hi+lo)/2,hi);!
      left.start();!
      right.run();  // call run instead of start!!
      left.join();  // don’t move this up a line – why?!

! ans = left.ans + right.ans;!
    }!
  }!
}!
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+!
Java ForkJoin Framework 

n  In the end, Java threads are still to heavyweight! 

n  Use java.util.concurrent package available in Java 7 
standard libraries 

n  To use create a ForkJoinPool!

n  ForkJoin documentation recommends 500-50000 basic 
operations per thread for optimal performance guarantees 

+!
Java ForkJoin Framework 

class SumArray extends RecursiveTask<Integer> { 
  int lo; int hi; int[] arr; // arguments 
  SumArray(int[] a, int l, int h) { … } 
  protected Integer compute(){// return answer 
    if(hi – lo < SEQUENTIAL_CUTOFF) { 
      int ans = 0; 
      for(int i=lo; i < hi; i++) 
        ans += arr[i]; 
      return ans; 
    } else { 
      SumArray left = new SumArray(arr,lo,(hi+lo)/2); 
      SumArray right= new SumArray(arr,(hi+lo)/2,hi); 
      left.fork(); 
      int rightAns = right.compute(); 
      int leftAns  = left.join();  
      return leftAns + rightAns; 
    } 
  } 
} 
static final ForkJoinPool fjPool = new ForkJoinPool(); 
int sum(int[] arr){ 
  return fjPool.invoke(new SumArray(arr,0,arr.length)); 
} 
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+!
Different terms, same basic idea 

Don’t subclass Thread         Do subclass RecursiveTask<V> 

Don’t override run         Do override compute 

Do not use an ans field         Do return a V from compute 

Don’t call start         Do call fork 

Don’t just call join     Do call join which returns answer 

Don’t call run to hand-optimize    Do call compute to hand-optimize 

Don’t have a topmost call to run Do create a pool and call invoke 

 

See the handouts page for a link to: 

 “A Beginner’s Introduction to the ForkJoin Framework” 

 
13!

+!
Reductions 

n  Computations of this form are called reductions  

n  Reduce collection to a single answer via an associative operator 
n  Examples: max, count, leftmost, rightmost, sum, product, … 

n  Non-examples: median, subtraction, exponentiation 
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+!
Maps (Data Parallelism) 

n  A map operates on each element of a collection independently 
to create a new collection of the same size 
n  No combining results 

n  Exercise: how could you code up vector addition using 
ForkJoin Framework? 

int[] vector_add(int[] arr1, int[] arr2){!
  assert (arr1.length == arr2.length);!
  result = new int[arr1.length];!
  FORALL(i=0; i < arr1.length; i++) {!
    result[i] = arr1[i] + arr2[i];!
  }!
  return result;!
}!

+!
Maps and Reductions 

n  Maps and reductions are the “workhorses” of parallel 
programming 

n  Learn to recognize when an algorithm can be written in terms of 
maps and reductions 

 

n  Programming them becomes “trivial” with a little practice 

n  Exactly like sequential for-loops seem second-nature 
 

n  Google’s MapReduce framweork 
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+!
Analyzing ForkJoin Algorithms 

n  Focus on efficiency (instead of correctness) 
n  Want asymptotic bounds 

n  Analyze the algorithm for any number of processors 

n  ForkJoin Framework guarantees expected run-time performance is 
asymptotically optimal for given number of processors 

n  So we can analyze algorithms assuming this guarantee 

+!
Work and Span 

n  Let TP be the running time if there are P processors available 

n  Two key measures of run-time for fork-join parallelism: 

n  Work (T1): How long it takes to run on 1 processor 

n  “Sequentialize” the recursive forking algorithm 

n  Span (T∞) : How long it would take with infinite processors 
n  The longest dependence-chain 

n  Example: O(log n) for summing an array  

n  Notice having > n/2 processors is no additional help 
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+!
Program Execution as a DAG 

n  A program execution using fork and join can be viewed 
as a DAG 
n  Nodes: Pieces of O(1) work  

n  Edges: Source must finish before destination starts 

n  A fork “ends a node” and makes 
two outgoing edges 

 
n  A join “ends a node” and makes a 

node with two incoming edges 

+!
Summing an array of integers 

base 
case 

divide  

combine 
results  

balanced 
binary tree 

balanced 
binary tree 
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+!
Work and Span in terms of DAG 

n  Recall: TP = running time if there are P processors available 

n  Work (T1): How long it takes to run on 1 processor 

n  Corresponds to the number of nodes in the DAG 

n  O(N) for simple maps and reductions 

n  Span (T∞) : How long it would take with infinite processors 
n  Length of the longest path in the DAG 

n  Infinite processors must still wait for earlier results to be done 

n  O(log N) for simple maps and reductions 

+!
Speed-Up 

n  Speed-up on P processors is defined as T1 / TP   

n  If speed-up is P as we vary P, we call it perfect linear speed-up 
n  Perfect linear speed-up means doubling P halves running time 

n  Usually our goal – hard to get in practice 

n  Parallelism is the maximum possible speed-up: T1 / T ∞  

n  At some point, adding processors won’t help 

n  Where that point is depends on the span 
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+!
ForkJoin provides optimal TP 

n  ForkJoin guarantees TP  =  O((T1 / P) + T ∞) 

n  No implementation can be better than O(T ∞) 

n  No implementation with P processors can be better than O(T1/P) 

n  First term dominates for small P, second for large P 

n  The ForkJoin Framework gives an expected-time guarantee of 
asymptotically optimal!  
n  Guarantee requires a few assumptions about your code… 

 

+!
Division of responsibility 

n  Our job as ForkJoin Framework users: 
n  Pick a good algorithm, write a program 
n  All threads do approximately equal amount of work 
n  All threads do small but not tiny amount of work 

n  The framework-writer’s job: 
n  Assign work to available processors to avoid idling 

n  Let framework-user ignore all scheduling issues 
n  Keep constant factors low 
n  Give the expected-time optimal guarantee assuming framework-

user did his/her job 

TP  =  O((T1 / P) + T ∞) 
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+!
Examples 

TP  =  O((T1 / P) + T ∞) 

n  In the algorithms seen so far (e.g., sum an array): 
n   T1 = O(n) 
n   T ∞= O(log n) 

n  So expect (ignoring overheads): TP  =  O(n/P + log n) 
 

n  Suppose instead: 
n   T1 = O(n2) 

n   T ∞= O(n) 

n  So expect (ignoring overheads): TP  =  O(n2/P + n) 

  

+!
Amdahl’s Law (derive on board) 

n  Provides upper-bound on speedup given that only part of 
algorithm can be parallelized 

n  Amdahl’s Law states: 

 

n  where S is the proportion of the algorithm that cannot be 
parallelized 

n  Corollary of Amdahl’s Law: 
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+!
Amdahl’s Law is Bad News! 

n  Suppose 33% of a program’s execution is sequential 
n  Then a billion processors won’t give a speedup over 3x 

n  From 1980-2005, every 12 years gave 100x speedup 
n  Now suppose in 12 years, clock speed is the same but you get 

256 processors instead of 1 

n  To get 100x speedup, we need 

   100 ≤ 1 / (S + (1-S)/256) 

 Which means S ≤ .0061  (i.e., 99.4% perfectly parallelizable)  

+!
Take home message 

Amdahl’s Law is a bummer! 
n  Unparallelized parts become a bottleneck very quickly 
n  But it doesn’t mean additional processors are worthless 

 

n  We can find new parallel algorithms 
n  Some things that seem sequential are actually parallelizable 
 

n  We can change the problem or do new things 
n  Example: Video games use tons of parallel processors   

n  They are not rendering 10-year-old graphics faster 
n  They are rendering more beautiful(?) monsters 


