
3/18/14	

1	

+

Lecture 23: Divide and
Conquer Parallelism
Slides adapted from Dan Grossman

+
Today

n P&C Section 3

n Objectives
n  Threads in Java

n  Summing an array of integers using threads

n  Work up to a correct implementation!

n Announcements
n  This week’s assignment is cancelled

n  Turn in any (running) code by Friday for extra credit

3/18/14	

2	

+
Cooking Analogy

n  Sequential programming
n  One cook performing each step of a recipe

n  Each step finished before next one started

n  Parallelism:
n  Extra cooks (or equipment) to finish faster

n  At some point, extra hands don’t help anymore

n  Concurrency:
n  Lots of cooks but only one oven!

n  Coordinate access to oven so no

burning or crowding

+
Recap

n Sequential programming
n  Limitations of this approach

n Parallelism versus concurrency

n Explicit threads with shared memory
n  Alternative models in text

n Thread is a single unit of execution
n  Separate call stacks, program counter, local variable

n  Shared static fields and objects

3/18/14	

3	

+
Creating threads in Java

1. Define a class C extending java.lang.Thread and
override the public void run() method

2. Create an object of class C (i.e. using new keyword)

3. Call the start method of the new object
n  start creates a new thread and calls its run method

n  Directly calling run doesn’t create a new thread

n  Just a normal method call in the current thread

+
Running Illustrative Example

n Sum an array of integers

n First attempt
n  Use 4 threads to sum 1/4 of the array in parallel

n  Add together the result from the 4 threads for final
answer

 ans0 ans1 ans2 ans3
 +
 ans

3/18/14	

4	

+
First Attempt

class SumThread extends Thread {!
 int lo, int hi, int[] arr;//fields to know what to do!
 int ans = 0; // for communicating result!
 SumThread(int[] a, int l, int h) { … }!
 public void run(){ … }!
}!
!
int sum(int[] arr){!
 int len = arr.length;!
 int ans = 0;!
 SumThread[] ts = new SumThread[4];!
 for(int i=0; i < 4; i++){// do parallel computations!
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);!
 ts[i].start(); // use start not run!
 }!
 for(int i=0; i < 4; i++) // combine results!
 ans += ts[i].ans;!
 return ans;!
}!

+

class SumThread extends Thread {!
 int lo, int hi, int[] arr;//fields to know what to do!
 int ans = 0; // for communicating result!
 SumThread(int[] a, int l, int h) { … }!
 public void run(){ … }!
}!
!
int sum(int[] arr){!
 int len = arr.length;!
 int ans = 0;!
 SumThread[] ts = new SumThread[4];!
 for(int i=0; i < 4; i++){// do parallel computations!
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);!
 ts[i].start(); // start not run!
 }!
 for(int i=0; i < 4; i++) // combine results!
 ts[i].join(); // wait for helper to finish!!
 ans += ts[i].ans;!
 return ans;!

}!

Second Attempt

3/18/14	

5	

+
Thread Class Methods

n  void start()!
n  calls void run()!

n  void join()!
n  blocks until receiver thread done

n  can throw an InterruptedException!

n  Style called fork-join parallelism

n  Some memory sharing: lo, hi, arr, ans fields

n  Later learn how to protect using synchronized.

+
Problems with Second Attempt

1. The number of threads is hard coded (magic number)
n  Don’t use numbers where a variable is appropriate

n  Pass in the number of threads to use as parameter to sum

3/18/14	

6	

+
Problems with Second Attempt

2. Want to use (only) processors available to us now
n  Can change while your thread is running

n  Fewer threads than processors leads to under-utilized resources

n  More threads than processors leads to slow down

n/3 n/3 n/3 n/4 n/4 n/4

n/4

P1 P2 P3 P1 P2 P3

t time
units

3/4t time
units

3/4t time
units

Suppose 3 threads take t time
units total

Then 4 threads take 1.5t time
units total

+
Problems with Second Attempt

3. Divided array equal among threads
n  Equal amount of data does not imply an equal amount of work

n  Referred to as load imbalance

n  Load imbalance hurts efficiency since must wait till all threads
done

3/18/14	

7	

+
Third Attempt

n  Use lots of threads! Far more than the number of processors
n  Each cook takes a pile of potatoes, slices them, comes back for

more when done

n  Independent of the number of processors

n  Change in the number of processors translates to a change in the
amount of time

n  Each thread will do a small amount of work (helps with load
imbalance)

 ans0 ans1 … ansN
 ans

+
Problems with Third Attempt

n  Use lots of threads! Far more than the number of processors
n  Lots of overhead from creating so many threads

n  In the extreme, one thread per entry in the array requires O(N)
work to combine final answers!

 ans0 ans1 … ansN
 ans

3/18/14	

8	

+
Final Attempt

n  Divide-and-conquer Parallelism!
n  Change our algorithm

n  Use parallelism for the recursive calls

+ + + + + + + +

+ + + +

+ +
+

+
Divide and Conquer Parallelism

class SumThread extends java.lang.Thread {!
 int lo; int hi; int[] arr; // arguments!
 int ans = 0; // result!
 SumThread(int[] a, int l, int h) { … }!
 public void run(){ // override!
 if(hi – lo < SEQUENTIAL_CUTOFF)!
 for(int i=lo; i < hi; i++)!
 ans += arr[i];!
 else {!
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);!
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);!
 left.start();!
 right.start();!
 left.join(); // don’t move this up a line – why?!
 right.join();!
 ans = left.ans + right.ans;!
 }!
 }!
}!

3/18/14	

9	

+
Divide and Conquer Parallelism

n Divide array in half with one thread per half
n  Create ~2N threads, each thread doing O(1) work

n  If we have O(N) processors, run time is O(logN)!

n  Why? Because each level is done in parallel

Carry out divide-and-conquer on small array

+
Divide-and-conquer Parallelism

n  Final improvements
n  Choose cutoff value: below cutoff switch to sequential

programming

n  Don’t create two threads: create one thread and have the calling
thread do the other half of the work

n  Use ForkJoin Framework for lightweight threads
n  Look at this after Spring Break!

