
3/18/14!

1!

+!

Lecture 22: Parallelism &
Concurrency
Slides adapted from Dan Grossman

+!
Today

n  Reading
n  A Sophomoric Introduction to Shared-Memory Parallelism and

Concurrency (S&C) Section 2

n  Objectives
n  Weekly lab and assignment

n  Introduce parallelism and concurrency

n  Announcements
n  Weekly programming assignment can be done with partner!

3/18/14!

2!

+!
This week’s assignment and lab

n  Create a CompleteBinaryTree<E> class
n  Values are added and removed in such a way that completeness

is preserved

n  Should be a straightforward assignment

n  Experiments with binary search trees (BST)
n  Method to insert value into existing BST

n  Compute height of BST of randomly generated integers

+!
Sequential Programming

n  Almost everything you’re taught involves sequential programming
n  1980 – 2005: computers twice as fast every 18 months to 2 years!

n  Limitations of sequential programming
n  Nobody knows how to continue this trend

n  Computers now have multiple cores – how to take advantage?

n  Computation (e.g. searching, sorting) involves petabytes of data

n  Moving beyond sequential programming
n  Parallelism

n  Concurrency

3/18/14!

3!

+!
What does it look like?

n  What does it look like to move beyond sequential programming?

n  Programming

n  Divide work among threads of execution and coordinate
(synchronize) among them

n  Algorithms

n  How can parallel activity provide speed-up (more throughput, i.e.
more work done per unit time)

n  Data structures

n  May need to support concurrent access (multiple threads
operating on data at the same time)

+!
Parallelism vs. Concurrency

n  Sequential programming:
n  One thing happens at a time

n  Parallelism:
n  Use additional computational resources to produce an

answer faster

n  Concurrency
n  Correctly and efficiently controlling access by multiple

threads to shared resources

3/18/14!

4!

+!
Cooking Analogy

n  Sequential programming
n  One cook performing each step of a recipe

n  Each step finished before next one started

n  Parallelism:
n  Extra cooks (or equipment) to finish faster

n  At some point, extra hands don’t help anymore

n  Concurrency:
n  Lots of cooks but only one oven!

n  Coordinate access to oven so no

burning or crowding

+!
Sequential Programming

n  When running, a sequential program has:
n  One call stack

n  Each stack frame holding local variables

n  One program counter pointing to memory
location of currently executing instruction

n  Static fields of classes

n  Objects created by calling new stored on
the “heap” (not related to heap data
structure)

3/18/14!

5!

+!
Explicit Threads with Shared
Memory

n  Threads
n  The smallest unit of execution – similar to running a sequential

program

n  Each thread has its own call stack, program counter, local
variables

n  Threads share static fields and objects

n  Threads communicate by writing/reading to same objects

n  To communicate, write somewhere another thread can read

+!
Shared Memory

…

pc=0x…

…

pc=0x…

…

pc=0x…

…

Threads with own unshared
call stack and program
counter. Local variables are
numbers/null or heap
references!

Heap for all objects
and static fields!

3/18/14!

6!

+!
Summary

n  Sequential programming
n  Limitations of this approach

n  Parallelism versus concurrency

n  Explicit threads with shared memory
n  Alternative models in text

n  Thread is a single unit of execution
n  Separate call stacks, program counter, local variable

n  Shared static fields and objects

