Lecture 20: Splay Trees

Today

m Reading
= JSCh. 14

m Objectives
m Finish binary trees
= Splay trees

m Announcements
» Midterm Monday March 10%
= “Programming” assignment has same due date (Sunday night)
= Next week we start Parallelism and Concurrency (see webpage)

3/6/14

=+

Recap: Locating a value in a BST

protected BinaryTree<E> locate(BinaryTree<E> node, E value) {
E nodevValue = node.value();
BinaryTree<E> child;

// If node’s value equals value, we’'re done
if (nodevValue.equals(value))
return node;

// Look left if less than, right if greater
if (ordering.compare(nodevValue,value) < 0) {
child = node.right();
} else {
child = node.left();
}

// If no child, return node. Else keep searching
if (child.isEmpty()) {

return node;
} else {

return locate(child, value);

}

4

Recap: Using locate to add a node

m Case One: Locate returns pointer to where node should be
added

m If value less than returned node, create new left child

= If value greater than returned node, create new right child

locate(root,
locate(root,

9)
15)

3/6/14

=+

Recap: Using locate to add a node

m Case Two: Locate returns pointer to node with same value
= Duplicates go in left subtree (could have chosen right)
= Where in the left subtree?

= locate(root, 3)
locate(root, 8)
locate(root, 14)

+

Recap: Using locate to add a node

m Case Two: Locate returns pointer to node with same value
= Duplicates go in left subtree (could have chosen right)
= Should be the rightmost descendent

myBST.add(3);
myBST.add(8);
myBST.add(14);

3/6/14

+
Recap: Using locate to add a node

public void add(E value) {
BinaryTree<E> newNode = new BinaryTree<E>(value);

// If no root, make new node root

if (root.isEmpty()) {
root = newNode;
} else {

// Find where new node should go
BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();

if (ordering.compare(nodevValue,value) < 0) {

insertLocation.setRight(newNode); // case one
}
else {
if (!insertLocation.left().isEmpty()) { // case two
predecessor(insertLocation).setRight (newNode) ;
} else {
insertLocation.setLeft(newNode); // case one
}
}
}
count++;

+
Remove a node

m Calling remove (E val) removes node with value val

m Case One:

= Node to be removed has no left subtree or no right subtree

NGV

(a)

3/6/14

+
Remove a node

m Calling remove (E val) removes node with value val

m Case Two:

= Node to be removed has both left and right subtree but its left
child has no right subtree

_becomes new

left child has no
right subtree

+
Remove a node

m Calling remove (E val) removes node with value val

m Case Three:

u Predecessor of root node becomes new root

predecessor(x)

3/6/14

+

Remove a node

m To remove a node
= Locate the node to be removed
= Remove node

= Depending on case, reset pointers (may require finding
predecessor)

m Complexity is O(h) where h is height of tree
= Worst-case O(h) to locate
= Worst-case O(h) to find predecessor

m Recall thatlog,N<h <N

+
Complexity

m locate, predecessor, add, contains, remove are
all O(h)

m Can we guarantee that h is O(log,n)?
m Only if tree stays balanced!!

m Binary search trees that stay balanced
= AVL trees (1962)
m Red-black trees (1972)

m Splay trees (1985) don’t necessarily stay
balanced but provide fast access for repeated
calls

3/6/14

Splay Trees

m To splay (v.): to spread out and apart

m A splay tree is a binary search tree that rearranges
its nodes via splaying in order to provide faster
access to recently accessed elements

m Splaying moves a node to the root of the tree

m Splaying uses two fundamental operations: right
and left rotations

+
Right and Left Rotations

m Key idea: Rotate a node higher in tree while maintaining
binary search tree property

Right rotation

A A Left rotation
_//

3/6/14

3/6/14

+ :
Splaying

m Case One: x is the root

= Done!

m Case Two: x is the left or right child of the root
= Left or right rotate. Done!

m Case Three: x is the left child of a left child (or right of right)
= Right rotation of grandparent. Right rotation of parent. Continue
splaying
m Case Four: x is the right child of a left child (or left of right)

= Left rotation of parent. Right rotation of grandparent. Continue
splaying

Case Three

m x is the left child of a left child (or right of right)

+
Case Four |I

m x is the right child of a left child (or left of right)

» () p 3
) Ay .

+
Splay Trees

m When do you splay?
= When call add, contains, or get method — splay on element
= When call remove — splay on element’s parent

m Depth of nodes on original path from x to root is halved on
average

m If repeatedly look for same elements, then rise to top -- and
found faster!

m Splay code is non-trivial but follows ideas given

3/6/14

Example of modified operation

public boolean contains(E val) {
// If empty tree return false
if(root.isEmpty()) { return false; }

// Locate node
BinaryTree<E> possibleLocation = locate(root,val);

// I1If the value is in the tree, take the

// opportunity to splay

if (val.equals(possibleLocation.value())){
splay(possibleLocation);
root = possibleLocation;
return true;

} else {
return false;

contains changes
the tree...

3/6/14

10

