
3/6/14	

1	

+

Lecture 20: Splay Trees

+
Today

n Reading
n  JS Ch. 14

n Objectives
n  Finish binary trees

n  Splay trees

n Announcements
n  Midterm Monday March 10th

n  “Programming” assignment has same due date (Sunday night)

n  Next week we start Parallelism and Concurrency (see webpage)

3/6/14	

2	

+

protected BinaryTree<E> locate(BinaryTree<E> node, E value) {!
!E nodeValue = node.value();!
!BinaryTree<E> child;!

!
!// If node’s value equals value, we’re done!
!if (nodeValue.equals(value)) !
! !return node; !

!
!// Look left if less than, right if greater!
!if (ordering.compare(nodeValue,value) < 0) {!
! !child = node.right();!
!} else {!
! !child = node.left();!
!}!

!
!// If no child, return node. Else keep searching!
!if (child.isEmpty()) {!
! !return node;!
!} else {!
! !return locate(child, value);!
!}!

}!

Recap: Locating a value in a BST

+
Recap: Using locate to add a node

n  Case One: Locate returns pointer to where node should be
added
n  If value less than returned node, create new left child

n  If value greater than returned node, create new right child

9

15

10 = locate(root, 9)!
14 = locate(root, 15)!

3/6/14	

3	

+
Recap: Using locate to add a node

n  Case Two: Locate returns pointer to node with same value
n  Duplicates go in left subtree (could have chosen right)

n  Where in the left subtree?

 3 = locate(root, 3)!
 8 = locate(root, 8)!
14 = locate(root, 14)!

+
Recap: Using locate to add a node

n  Case Two: Locate returns pointer to node with same value
n  Duplicates go in left subtree (could have chosen right)

n  Should be the rightmost descendent

8

3

14

myBST.add(3);!
myBST.add(8);!
myBST.add(14);!

3/6/14	

4	

+

public void add(E value) {!
!BinaryTree<E> newNode = new BinaryTree<E>(value);!

!
!// If no root, make new node root!
!if (root.isEmpty()) {!
! !root = newNode;!
!} else {!

!
! !// Find where new node should go!
! !BinaryTree<E> insertLocation = locate(root,value);!
! !E nodeValue = insertLocation.value();!
! !!
! !if (ordering.compare(nodeValue,value) < 0) {!

 insertLocation.setRight(newNode); !// case one!
 } !

! !else {!
! ! !if (!insertLocation.left().isEmpty()) { // case two!
! ! ! !predecessor(insertLocation).setRight(newNode);!
! ! !} else {!
! ! ! !insertLocation.setLeft(newNode); // case one!
! ! !}!
! !}!
!}!
!count++;!

}!

Recap: Using locate to add a node

+
Remove a node

n  Calling remove(E val) removes node with value val

n  Case One:
n  Node to be removed has no left subtree or no right subtree

352 Search Trees

(a)

A
B

A

B

(c)

(b)

x x

x

Figure 14.2 The three simple cases of removing a root value from a tree.

3

2

1

2

1

3x

predecessor()x

Figure 14.3 Removing the root of a tree with a rightmost left descendant.

3/6/14	

5	

+
Remove a node

n  Calling remove(E val) removes node with value val

n  Case Two:
n  Node to be removed has both left and right subtree but its left

child has no right subtree

352 Search Trees

(a)

A
B

A

B

(c)

(b)

x x

x

Figure 14.2 The three simple cases of removing a root value from a tree.

3

2

1

2

1

3x

predecessor()x

Figure 14.3 Removing the root of a tree with a rightmost left descendant.

left child has no
right subtree

becomes new
root

+
Remove a node

n  Calling remove(E val) removes node with value val

n  Case Three:
n  Predecessor of root node becomes new root

352 Search Trees

(a)

A
B

A

B

(c)

(b)

x x

x

Figure 14.2 The three simple cases of removing a root value from a tree.

3

2

1

2

1

3x

predecessor()x

Figure 14.3 Removing the root of a tree with a rightmost left descendant.

3/6/14	

6	

+
Remove a node

n To remove a node
n  Locate the node to be removed

n  Remove node

n  Depending on case, reset pointers (may require finding
predecessor)

n Complexity is O(h) where h is height of tree
n  Worst-case O(h) to locate

n  Worst-case O(h) to find predecessor

n Recall that log2N ≤ h ≤ N

+
Complexity

n locate, predecessor, add, contains, remove are
all O(h)

n Can we guarantee that h is O(log2n)?
n Only if tree stays balanced!!

n Binary search trees that stay balanced
n AVL trees (1962)
n Red-black trees (1972)

n Splay trees (1985) don’t necessarily stay
balanced but provide fast access for repeated
calls

3/6/14	

7	

+
Splay Trees

n To splay (v.): to spread out and apart

n A splay tree is a binary search tree that rearranges
its nodes via splaying in order to provide faster
access to recently accessed elements

n Splaying moves a node to the root of the tree

n Splaying uses two fundamental operations: right
and left rotations

+
Right and Left Rotations

n  Key idea: Rotate a node higher in tree while maintaining
binary search tree property 14.5 Splay Trees 355

y

Left rotation

Right rotation

BA

C A

B C

y x

x

Figure 14.4 The relation between rotated subtrees.

but in all other ways, the tree remains the same. In particular, there is no
structural effect on the tree above the original location of node y. A left rotation
is precisely the opposite of a right rotation; these operations are inverses of each
other.

The code for rotating a binary tree about a node is a method of the
class. We show, here, ; a similar method performs a left Finally, a right

handed
method!

rotation.

For each rotation accomplished, the nonroot node moves upward by one
level. Making use of this fact, we can now develop an operation to splay a tree
at a particular node. It works as follows:

3/6/14	

8	

+
Splaying

n  Case One: x is the root
n  Done!

n  Case Two: x is the left or right child of the root
n  Left or right rotate. Done!

n  Case Three: x is the left child of a left child (or right of right)
n  Right rotation of grandparent. Right rotation of parent. Continue

splaying

n  Case Four: x is the right child of a left child (or left of right)
n  Left rotation of parent. Right rotation of grandparent. Continue

splaying

+
Case Three

n  x is the left child of a left child (or right of right) 356 Search Trees

(a)

(b)

g

p

x

x

p x

g

g

x

p

g

x

p

g

p

x

g p

Figure 14.5 Two of the rotation pairs used in the splaying operation. The other cases
are mirror images of those shown here.

• If x is the root, we are done.

• If x is a left (or right) child of the root, rotate the tree to the right (or left)
about the root. x becomes the root and we are done.

• If x is the left child of its parent p, which is, in turn, the left child of its
grandparent g, rotate right about g, followed by a right rotation about p
(Figure 14.5a). A symmetric pair of rotations is possible if x is a left child
of a left child. After double rotation, continue splay of tree at x with this
new tree.

• If x is the right child of p, which is the left child of g, we rotate left about
p, then right about g (Figure 14.5b). The method is similar if x is the left
child of a right child. Again, continue the splay at x in the new tree.

After the splay has been completed, the node x is located at the root of the
tree. If node x were to be immediately accessed again (a strong possibility),
the tree is clearly optimized to handle this situation. It is not the case that the
tree becomes more balanced (see Figure 14.5a). Clearly, if the tree is splayed at
an extremal value, the tree is likely to be extremely unbalanced. An interesting
feature, however, is that the depth of the nodes on the original path from x to
the root of the tree is, on average, halved. Since the average depth of these

3/6/14	

9	

+
Case Four

n  x is the right child of a left child (or left of right)

356 Search Trees

(a)

(b)

g

p

x

x

p x

g

g

x

p

g

x

p

g

p

x

g p

Figure 14.5 Two of the rotation pairs used in the splaying operation. The other cases
are mirror images of those shown here.

• If x is the root, we are done.

• If x is a left (or right) child of the root, rotate the tree to the right (or left)
about the root. x becomes the root and we are done.

• If x is the left child of its parent p, which is, in turn, the left child of its
grandparent g, rotate right about g, followed by a right rotation about p
(Figure 14.5a). A symmetric pair of rotations is possible if x is a left child
of a left child. After double rotation, continue splay of tree at x with this
new tree.

• If x is the right child of p, which is the left child of g, we rotate left about
p, then right about g (Figure 14.5b). The method is similar if x is the left
child of a right child. Again, continue the splay at x in the new tree.

After the splay has been completed, the node x is located at the root of the
tree. If node x were to be immediately accessed again (a strong possibility),
the tree is clearly optimized to handle this situation. It is not the case that the
tree becomes more balanced (see Figure 14.5a). Clearly, if the tree is splayed at
an extremal value, the tree is likely to be extremely unbalanced. An interesting
feature, however, is that the depth of the nodes on the original path from x to
the root of the tree is, on average, halved. Since the average depth of these

+
Splay Trees

n  When do you splay?
n  When call add, contains, or get method – splay on element

n  When call remove – splay on element’s parent

n  Depth of nodes on original path from x to root is halved on
average

n  If repeatedly look for same elements, then rise to top -- and
found faster!

n  Splay code is non-trivial but follows ideas given

3/6/14	

10	

+
Example of modified operation

 public boolean contains(E val) {!
!// If empty tree return false!

 if(root.isEmpty()) { return false; }!
 !

!// Locate node!
!BinaryTree<E> possibleLocation = locate(root,val); !

!
!// If the value is in the tree, take the!
!// opportunity to splay!
!if (val.equals(possibleLocation.value())){ !
! !splay(possibleLocation); !
! !root = possibleLocation;!
! !return true; !

 } else {!
! !return false;!

 }!

contains changes
the tree…

