
1/22/14!

1!

+!

Lecture 2: Comments,
Conditions and Assertions

+!
Today

n Reading
n  JS Chapter 2

n Objectives:
n Finish review of Java
n Comments
n Pre- and post- conditions
n Assertions

n Announcements
n Book problems (solutions to odd-numbered in back of book)
n  comprehension_ques folder on Piazza
n No office hours on Monday

1/22/14!

2!

+!
Interfaces & Inheritance

n Class implements interface if supports all methods
defined in interface

n  Interface can extend another by adding methods
n  If A extends B and x has type A, then also has type B

n One class can extend another
n  inherits fields and methods

n  can override existing methods, add new ones

n  instanceof & casts
n  Ex: in Ratio class later

+!
Extending vs Implementing

n Extending a class allows sharing behavior:
n Card, OtherCard extend AbsCard

n Implementing an interface allows replacing
implementation
n Card, OtherCard implement CardInterface
n Either can be associated with variable of type

CardInterface.

1/22/14!

3!

+!
Card Deck Examples

n CardInterface -- interface

n AbsCard
n abstract class, implements CardInterface

n Card extends AbsCard

n OtherCard extends AbsCard

n Deck
n Class using cards

Alternate
implementations

End of Java Review!

1/22/14!

4!

+!

n What’s a package?

n When writing programs, put all classes and
interfaces in packages

n Familiar packages:
n java.util
n java.io
n java.lang
n javax.swing
n java.awt

Use Packages!

package assignment1;
...

+!
Generics

n  Can create classes parameterized by types

n  Vector<E>, List<E>, Association<K,V>

n  See Association class
n  part of Bailey structure5 library
n  See documentation and code on Bailey website

n  Can only instantiate type parameters by interfaces or
classes, not primitive types

n  Wrapper versions of primitive types can be used
instead of primitive types:
n  Integer (int), Double (double), Boolean (boolean)

1/22/14!

5!

+!
JavaDoc

n Stylized form of comments, w/tools to extract

n Common tags:
n @author author name
n @version date
n @param param name and description
n @return value returned, if any
n @throws description of any exceptions thrown

/**!
 * comments here!
 */!

+!
Comments

n Class header needs @author, @version

n Method header should include
n Description of what (not how) it does
n @param line for each parameter
n @return if method returns a value
n pre and post conditions as necessary

n  If no @return, then must have post
n  If checkable then add assert (see later) for

postconditions

1/22/14!

6!

+!
Pre and Post-conditions

n (Optional) practices that result in better code!

n Pre-condition: Specification of what must be
true for method to work properly

n Post-condition: Specification of what must be
true at end of method if precondition held
before execution.

n See Ratio class example

+!
Assertions in Java

n We won’t use the Assert class from Bailey.

n Command to check assertions in standard Java
n  assert boolExp

n  assert boolExp: message

n Article on when to use assert:
n  http://download.oracle.com/javase/7/docs/technotes/

guides/language/assert.html

n  Short summary -- never use for preconditions of public
methods -- make explicit checks

n  Use for postconditions & class invariants

