Lecture 18:
Heaps & Heapsort

’ Today

mReading
=]S 13.4-13.6 (Heaps and HeapSort)

mObjectives
= Midterm review
= Assignment review
m Heap operations
m Heapsort

3/2/14

’ Midterm Exam

= Monday March 10th
® 50 minute, in-class exam
m Covers everything through Splay trees

m Studying essentials
= The weekly assignment!
= Study guide and sample exams

= Form study groups

m No Quiz on Friday

: Weekly Programming Assignment

m Last minute change!

m Data structures digest
= Help you in your studying
= A list of all you've learned!

m Format the digest in a way that is helpful for you to
understand

3/2/14

3/2/14

. Recap: Priority Queues

m Priority Queue allows access to only the smallest
(largest) element

m Implementation based on trees

m Contrasting priority queues

= Unlike stacks and queues, order in does not determine
order out

m Unlike lists, cannot control where element is stored

= Cannot traverse a priority queue

: Array Representation

m Let data be an array
m data[0] contains the root
= the left child of data[i] isindata[2*i+1]
= the right child of data[i] isin data[2*i+2]

indices;: 0 1 2 3 456 7 8 9 10 11 12 13 14
dtaa UORCMES --- P T - - -

’ Heaps

m A heap is a complete binary tree whose root contains the
minimum value and whose subtrees are, themselves, heaps

m A heap is a complete binary tree whose values are in
ascending order on every path from the root to the leaf

E a from the course

° ° e ° webpage!
(=) ()

: Priority Queues Interface ‘I

public interface PriorityQueue<E extends Comparable<E>> {

// returns the minimum value
public E getFirst();

// removes and returns the minimum value
public E remove();

// adds a value to the priority queue
public E add();

3/2/14

3/2/14

: Adding to a Heap

m Pre-condition

= Heap is a complete binary tree.

= Values along every path are in
ascending order

m Adding
m Add value to end of dataf]

m Percolate upward

m Complexity?

: Adding to a Heap

m Pre-condition

= Heap is a complete binary tree.

= Values along every path are in
ascending order

= Adding
= Add value to end of data[]
= Percolate upward

= Complexity?

: Removing from a Heap

= Removing

= How would we remove from a
heap?

= Complexity?

\1\0\ \43\3\3\2\65\58\40\42\4\ BE
6 7 8 9 10 11 12 13 14

: Removing from a Heap

® Removing
= Remove root
= Move last leaf to root

= Push down

= Complexity?

|4|0| \433\2\65\5842\ [[[]

5.6 7 8 10 11 12 13 14

3/2/14

3/2/14

: Removing from a Heap

= Removing
= Remove root
= Move last leaf to root
= Push down

m Complexity?

Lo[3]1]asfa]3]2]es|ss[aofao] | | [|
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

’ HeapSort

m Suggests a new sorting algorithm!

m Add N integers to a heap

m Remove N integers from the heap

m What is the complexity of HeapSort?

m On what type of data would HeapSort perform well?

3/2/14

: Comparison of Sorting Algorithms

® Quicksort
= fastest on average O(n log n) but worst case is O(n?)
= takes O(log n) extra space

m Heapsort
= O(nlog n) in average and worst case
= No extra space
= Bit slower on average than Quicksort & Mergesort.

m Mergesort:
= O(nlog n) in average and worst case
= O(n) extra space.
= Performs well on external files where not all fit in memory.

