
3/2/14!

1!

+!

Lecture 18:
Heaps & Heapsort

+!
Today

n Reading
n JS 13.4-13.6 (Heaps and HeapSort)

n Objectives
n Midterm review
n Assignment review
n Heap operations
n Heapsort

3/2/14!

2!

+!
Midterm Exam

n  Monday March 10th

n  50 minute, in-class exam

n  Covers everything through Splay trees

n  Studying essentials
n  The weekly assignment!

n  Study guide and sample exams

n  Form study groups

n  No Quiz on Friday

+!
Weekly Programming Assignment

n Last minute change!

n Data structures digest
n  Help you in your studying
n  A list of all you’ve learned!

n  Format the digest in a way that is helpful for you to
understand

3/2/14!

3!

+!
Recap: Priority Queues

n Priority Queue allows access to only the smallest
(largest) element

n  Implementation based on trees

n Contrasting priority queues
n  Unlike stacks and queues, order in does not determine

order out

n  Unlike lists, cannot control where element is stored

n  Cannot traverse a priority queue

+!
Array Representation

n  Let data be an array
n  data[0] contains the root
n  the left child of data[i] is in data[2*i+1]!
n  the right child of data[i] is in data[2*i+2]!

indices: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14!
 data: U O R C M E S - - - P T - - -!

3/2/14!

4!

+!
Heaps

n  A heap is a complete binary tree whose root contains the
minimum value and whose subtrees are, themselves, heaps

n  A heap is a complete binary tree whose values are in
ascending order on every path from the root to the leaf

from the course
webpage!

+!
Priority Queues Interface

public interface PriorityQueue<E extends Comparable<E>> {!
!

!// returns the minimum value!
!public E getFirst();!

!
!// removes and returns the minimum value!
!public E remove();!
!!
!// adds a value to the priority queue!
!public E add();!
!…!

}!

3/2/14!

5!

+!
Adding to a Heap

n  Pre-condition
n  Heap is a complete binary tree.

n  Values along every path are in
ascending order

n  Adding
n  Add value to end of data[]!

n  Percolate upward

n  Complexity?

324 Priority Queues

−1

10

2

4

43

65 58 40 42

2

3

−1 0 1 43 2 65 58 40 42 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 3

2−1 0 1 43 3 2 65 58 40 42 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

3 2

4

43

65 58 40 42 2

−1

0

3

3

3

3

(a) Before

(b) After

Figure 13.3 The addition of a value (2) to a vector-based heap. (a) The value is
inserted into a free location known to be part of the result structure. (b) The value is
percolated up to the correct location on the unique path to the root.

+!

324 Priority Queues

−1

10

2

4

43

65 58 40 42

2

3

−1 0 1 43 2 65 58 40 42 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 3

2−1 0 1 43 3 2 65 58 40 42 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

3 2

4

43

65 58 40 42 2

−1

0

3

3

3

3

(a) Before

(b) After

Figure 13.3 The addition of a value (2) to a vector-based heap. (a) The value is
inserted into a free location known to be part of the result structure. (b) The value is
percolated up to the correct location on the unique path to the root.

Adding to a Heap

n  Pre-condition
n  Heap is a complete binary tree.

n  Values along every path are in
ascending order

n  Adding
n  Add value to end of data[]!

n  Percolate upward

n  Complexity?

3/2/14!

6!

+! 13.4 A Heap Implementation 327

1

3 2

4

43

65 58 40 42

0

-1

3

0 1 43 2 65 58 40 42 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
-1 33

0 1 43 2 65 58 40 42 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

33

1

3 2

4

43

65 58 40 42

0

3

(a)

(b)

Figure 13.4 Removing a value from the heap shown in (a) involves moving the right-
most value of the vector to the top of the heap as in (b). Note that this value is likely to
violate the heap property but that the subtrees will remain heaps.

Removing from a Heap

n  Removing
n  How would we remove from a

heap?

n  Complexity?

+!
Removing from a Heap

n  Removing
n  Remove root

n  Move last leaf to root

n  Push down

n  Complexity?

328 Priority Queues

1

3 2

65

43

42

0

4

3

58 40

1

3 243

65 58 40 42

3

0

4

(b)

1 43 65 58 40 42
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

30 3 4 2

(a)

0 1 43 2 65 58 40 42
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

34 3

Figure 13.5 Removing a value (continued). In (a) the newly inserted value at the
root is pushed down along a shaded path following the smallest children (lightly shaded
nodes are also considered in determining the path). In (b) the root value finds, over
several iterations, the correct location along the path. Smaller values shift upward to
make room for the new value.

3/2/14!

7!

+!
Removing from a Heap

n  Removing
n  Remove root

n  Move last leaf to root

n  Push down

n  Complexity?

328 Priority Queues

1

3 2

65

43

42

0

4

3

58 40

1

3 243

65 58 40 42

3

0

4

(b)

1 43 65 58 40 42
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

30 3 4 2

(a)

0 1 43 2 65 58 40 42
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

34 3

Figure 13.5 Removing a value (continued). In (a) the newly inserted value at the
root is pushed down along a shaded path following the smallest children (lightly shaded
nodes are also considered in determining the path). In (b) the root value finds, over
several iterations, the correct location along the path. Smaller values shift upward to
make room for the new value.

+!
HeapSort

n  Suggests a new sorting algorithm!

n  Add N integers to a heap

n  Remove N integers from the heap

n  What is the complexity of HeapSort?

n  On what type of data would HeapSort perform well?

3/2/14!

8!

+!
Comparison of Sorting Algorithms

n  Quicksort
n  fastest on average O(n log n) but worst case is O(n2)
n  takes O(log n) extra space

n  Heapsort
n  O(n log n) in average and worst case
n  No extra space
n  Bit slower on average than Quicksort & Mergesort.

n  Mergesort:
n  O(n log n) in average and worst case
n  O(n) extra space.
n  Performs well on external files where not all fit in memory.

