Lecture 17: Priority
Queues

’ Today

= Reading
= JS 13.1-13.4.1 (Priority Queues)

m Objectives
= Build up to Priority Queues
m Array representation of trees
m Heaps

2/27/14

2/27/14

+
Recap Tree Traversals

m Unlike lists, there is no standard order of traversal for trees

m A tree traversal is a specific order in which to traverse a tree
structure

m Pre-order Traversal

= node, left subtree, right subtree

m In-order Traversal
= left subtree, node, right subtree

m Post-order Traversal

= left subtree, right subtree, root

+
Recap Tree Traversals

// Prints values using pre-order traversal
public void preOrderTraversal() {
if(!isEmpty()) {
System.out.println(val);
left.preOrderTraversal();
right.preOrderTraversal();

@ quixotic

apple igloo 200

! Priority Queues

m Priority Queue allows access to only the smallest
(largest) element

m Implementation based on trees

m Contrasting priority queues

= Unlike stacks and queues, order in does not determine
order out

m Unlike lists, cannot control where element is stored

= Cannot traverse a priority queue

m Applications
= Running processes on the CPU (top)
= Search (A¥*)

’ Priority Queues Interface

public interface PriorityQueue<E extends Comparable<E>> {

// returns the minimum value
public E getFirst();

// removes and returns the minimum value
public E remove();

// adds a value to the priority queue
public E add();

2/27/14

2/27/14

’ Array Representations of Trees

m Priority queues can be efficiently implemented using
binary trees!

m We’ve seen a recursive implementation of a binary tree

m We can, in fact, represent an entire binary tree using one
array!

m Let data be an array
= data[0] contains the root
n the left child of data[i] isindata[2*i+1]
= the right child of data[i] isin data[2*i+2]

’ Array Representations of Trees

m Let data be an array
= data[0] contains the root
= the left child of data[i] isindata[2*i+1]
= the right child of data[i] isin data[2*i+2]

’ Array Representations of Trees

m Let data be an array
= data[0] contains the root
= the left child of data[i] isindata[2*i+1]
= the right child of data[i] isin data[2*i+2]

ONONONO
(=) (=

’ Array Representation of Trees

m A tree of height h requires 2"*1-1 spots in the array
regardless of the number of nodes N

m Bad for long, skinny trees
= since N is only O(h)

m Good for full or complete trees
= since N is O(2"!) anyways

2/27/14

’ Heaps

m A heap is a complete binary tree whose root contains the
minimum value and whose subtrees are, themselves, heaps

= A heap is a complete binary tree whose values are in
ascending order on every path from the root to the leaf

a a from the course

ONORONO Hepses

’ Implementing a Priority Queue

m Heaps provide an excellent implementation of a priority
queue!

m Heaps themselves can be efficiently implemented using an
array representation of trees

m Operations °
oo

m remove()
ONONONO
(=) ()

2/27/14

