
2/27/14!

1!

+!

Lecture 17: Priority
Queues

+!
Today

n Reading
n  JS 13.1-13.4.1 (Priority Queues)

n Objectives
n  Build up to Priority Queues

n  Array representation of trees

n  Heaps

2/27/14!

2!

+!
Recap Tree Traversals

n  Unlike lists, there is no standard order of traversal for trees

n  A tree traversal is a specific order in which to traverse a tree
structure

n  Pre-order Traversal
n  node, left subtree, right subtree

n  In-order Traversal
n  left subtree, node, right subtree

n  Post-order Traversal
n  left subtree, right subtree, root

+!
Recap Tree Traversals

// Prints values using pre-order traversal!
public void preOrderTraversal() {!!

!if(!isEmpty()) {!
! !System.out.println(val);!
! !left.preOrderTraversal();!
! !right.preOrderTraversal();!

 }!
}!
 !

bob!

hello!

cat! igloo!

quixotic!

apple! zoo!

2/27/14!

3!

+!
Priority Queues

n Priority Queue allows access to only the smallest
(largest) element

n  Implementation based on trees

n Contrasting priority queues
n  Unlike stacks and queues, order in does not determine

order out

n  Unlike lists, cannot control where element is stored

n  Cannot traverse a priority queue

n Applications
n  Running processes on the CPU (top)

n  Search (A*)

+!
Priority Queues Interface

public interface PriorityQueue<E extends Comparable<E>> {!
!

!// returns the minimum value!
!public E getFirst();!

!
!// removes and returns the minimum value!
!public E remove();!
!!
!// adds a value to the priority queue!
!public E add();!
!…!

}!

2/27/14!

4!

+!
Array Representations of Trees

n Priority queues can be efficiently implemented using
binary trees!

n We’ve seen a recursive implementation of a binary tree

n We can, in fact, represent an entire binary tree using one
array!

n Let data be an array
n  data[0] contains the root

n  the left child of data[i] is in data[2*i+1]!

n  the right child of data[i] is in data[2*i+2]!

+!
Array Representations of Trees

n  Let data be an array
n  data[0] contains the root

n  the left child of data[i] is in data[2*i+1]!

n  the right child of data[i] is in data[2*i+2]!

Representing Expressions

• Represent 3 * 7 + 6 / 2 - (3 + 7) as tree
• Parser builds tree

• Send message to tree to print or evaluate

• Mutual recursion in parser

• Different classes for different kinds of nodes.

• See Parser code

Array Representations of
Trees

Array Representation
• data[0..n-1] can hold values in trees

• left subtree of node i in 2*i+1, right in 2*i+2,

• parent in (i-1)/2

Indices: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 data[]: U O R C M E S - - - P T - - -

Array Representation:
Efficiency

• Tree of height h, takes 2h+1-1 slots, even if only
has O(h) elements
• Bad for long, skinny trees

• Good for full or complete trees.

• Recall complete tree is full except possibly
bottom level and has all leaves at that level in
leftmost positions.

Min-Heap

• Min-Heap H is complete binary tree s.t.
• H is empty, or

• Both of the following hold:
• The value in root position is smallest value in H

• The left and right subtrees of H are also heaps.
Equivalent to saying parent ≤ both le" and right children

• Excellent implementation for priority queue
• Dequeue elements w/lowest priority values before higher

2/27/14!

5!

+!
Array Representations of Trees

n  Let data be an array
n  data[0] contains the root

n  the left child of data[i] is in data[2*i+1]!

n  the right child of data[i] is in data[2*i+2]!

+!
Array Representation of Trees

n A tree of height h requires 2h+1-1 spots in the array
regardless of the number of nodes N

n  Bad for long, skinny trees
n  since N is only O(h)

n  Good for full or complete trees
n  since N is O(2h+1) anyways

2/27/14!

6!

+!
Heaps

n  A heap is a complete binary tree whose root contains the
minimum value and whose subtrees are, themselves, heaps

n  A heap is a complete binary tree whose values are in
ascending order on every path from the root to the leaf

from the course
webpage!

+!
Implementing a Priority Queue

n  Heaps provide an excellent implementation of a priority
queue!

n  Heaps themselves can be efficiently implemented using an
array representation of trees

n  Operations
n  add()!

n  remove()!

