
2/25/14!

1!

+!

Lecture 16: Binary Trees
Implementation and Traversal

+!
Today

n Reading
n JS Ch. 12.6-12.10 (Trees)

n Objectives
n Weekly assignment
n Implementing a binary tree
n Tree traversals

2/25/14!

2!

+!
Announcements

n  Just a reminder
n  Start assignments earlier (Monday)!

n  Thursday mentor hours are much emptier (hint, hint)

n  Come to office hours (or make an appointment)

n  Ask questions in class

n Ask questions on Piazza
n  Read lab writeups before coming to lab

n  Don’t spend valuable time finishing lab – get to assignment

n  Everyone should have gotten Assignment 2 grades back

+!
More on the Weekly Assignment

n Calculator
n Updated the programming assignment writeup
n Calculator is only responsible for integer precision,

e.g. “3 2 /” should result in “1” being displayed

2/25/14!

3!

+!
Recap: Trees abound!

15

5 16

3 12

7

20

18 231310

6

+!
Recap: Tree Terminology

b!

a!

e! f!

i!

c!

d! g!

a is the parent of b
b is the child of a

siblings

root

interior
node

leaf

descendants
of b

2/25/14!

4!

+!
Recap: Binary Tree Theorems

n  (Theorem 1) Let T be a binary tree. For every k ≥ 0, there are
at most 2k nodes at level (depth) k

n  (Theorem 2) Let T be a binary tree with height h. Then T has at
most 2h+1-1 nodes.

n  (Theorem 3) Let T be a binary tree with N nodes. Then the
height h of T is at least log(N+1) - 1

n A binary tree T is balanced if it has the minimum
possible height for its number of nodes.

+!
Bailey BinaryTree Implementation

leaf node!

3!

empty node! interior node!

5!

2! 8!

2/25/14!

5!

+!
Bailey BinaryTree Implementation

n  public BinaryTree<E> left()!

n  public BinaryTree<E> right()!

n  public void setRight(BinaryTree<E> new Right)!

n  public E value()!

n  public boolean isEmpty() // tests if value is null!

n  depth(), height(), size(),...!

+!
Bailey BinaryTree Implementation

12.4 Implementation 283

R

=

+

1 *

2-

L 1

=

+

1 *

1

- 2

L

R

(a)

(b)

Figure 12.3 Expression trees. (a) An abstract expression tree representing
. (b) A possible connectivity of an implementation using references.

the empty nodes
aren’t shown!

2/25/14!

6!

+!
Tree Traversals

n  Unlike lists, there is no standard order of traversal for trees

n  A tree traversal is a specific order in which to traverse a tree
structure

n  Pre-order Traversal
n  root, left subtree, right subtree

n  In-order Traversal
n  left subtree, node, right subtree

n  Post-order Traversal
n  left subtree, right subtree, root

recursive or !
stack-based

implementation!

+!
Tree Traversals

n  Pre-order Traversal
n  root, left subtree, right subtree

n  In-order Traversal
n  left subtree, node, right subtree

n  Post-order Traversal
n  left subtree, right subtree, root

15

5 16

3 12

7

20

18 231310

6

n  List the order in which the nodes are visited

2/25/14!

7!

+!
Tree Traversals

n  Write a recursive method to print out the values in a
BinaryTree using a pre-order traversal

public void preOrderTraversal(BinaryTree<E> node)
{!

!

!

!

!

}!

+!
Evaluate Expression Tree

n Use post-order traversal to evaluate expression

*

+

- 6

1 4

/

- 2

3

