Lecture 13: Doubly
Linked Lists and Queues

’ Today

m Reading
= JS Ch 9 (Linked Lists) and JS Ch 10.2 (Queues)

m Objectives
m Review Linked Lists worksheet
= Week 4 Assignment (Doubly linked lists)
m Stacks and Queues

2/18/14

+
Announcements

m No quiz this Friday!

m Last faculty candidate this Friday

m Posted on Piazza

= pdf with neater (more informative) JavaDoc comments for

methods in CurDoublyLinkedList
m Solutions to Linked List worksheet

* Doubly Linked List

next
he a\d‘ pointer tail
Jl| 3 14 90 22
previous
pointer

2/18/14

2/18/14

" Doubly Linked List

m Useful if you need to traverse in both directions

m Must change twice as many links when adding or
removing!

m DoublyLinkedNode<E> class now contains pointer to
previous node

m java.util.LinkedList provides a doubly linked list

m We’ll use DoublyLinkedList from Bailey

" Doubly Linked List
heii ;111
J] 3 14 90 2 |1/
cur{
How do we remove the node pointed to by curr?

’ Removing from Doubly Linked List

public E remove(E value) {
DoublyLinkedNode<E> curr = head;
while(curr != null && !curr.value().equals(value)) {
curr = curr.next();

}

if(curr != null) {
if (curr.previous() != null) {
curr.previous().setNext(curr.next());
}else{

head = curr.next();

}

if(curr.next() != null) {
curr.next().setPrevious(curr.previous());
}else {

tail = curr.previous();
}
count--;
return curr.value();

}

return null;

! Review of Stacks

m Analogy: stack of plates

m Operations
m LIFO:“last in, first out”

m Push(), Pop()
\—/
——

m Limit access to data ——
m Facilitates certain algorithms
= Less easily corruptible w/o random access

2/18/14

’ Using a stack

Stack<String> s

new Stack<String>();

for (int i = 0; i < 4; ++i) {

s.push(”” + 1i);

}
N\
while (s.size() > 0) {
System.out.print(s.pop()); %’
) i
:
3210 g
+
Queue

m Analogy: line of people

m Operations €
m FIFO: “first in first out”
m enqueue() at end
= dequeue() from beginning

m Applications
m Simulations
= Event queue
m Keeping track when searching

2/18/14

+ .
Using a queue
Queue<String> g = new Queue<String>();

for (int i = 0; i < 4; ++i) {
g.enqueue(”” + 1i);

}

while (g.size() > 0) {
System.out.print(g.dequeue());

}
@ RN~

O]' 2 3 Queue growth

’ Queue Implementations

m Doubly Linked List
m Head of list is front of queue
m Tail of list is end of queue
= How complex for enqueue, dequeue?

m ArrayList:
m Which end should be front, rear?
= How complex for enqueue, dequeue?

m Array
m Which end should be front, rear?
m How complex for enqueue, dequeue?

2/18/14

