
2/11/14!

1!

+!

Lecture 10: Linked Lists

+!
Today

n Reading
n  JS Ch. 9 (Linked Lists)

n Objectives
n Helpful info. for weekly assignment
n Recap Iterators
n  Introduce Linked Lists

2/11/14!

2!

+!
Announcements

n New mentor hours!
n  Thur 8-10pm

n  Sat 2-4pm

n  Sun 2-4pm

n  Sun 8-10pm

n Mergesort proof on Piazza

n Good idea to read through the weekly programing
assignment writeup on Mondays!

+!
Weekly Programming Assignment

n File class:
n  Represents a file or directory

n  Doesn’t have to exist

n Use the BufferedReader and PrintWriter classes for
reading and writing to files.

n PrintWriter out =
 new PrintWriter(new FileWriter(...));

n BufferedReader in =
 new BufferedReader(new FileReader(...));

2/11/14!

3!

+!
Weekly Programming Assignment

n Many methods/constructors throw exceptions
n public String readLine() throws IOException

n Handle exceptions by try-catch construct

try {  
 ... myFile.readLine() ...  
} catch (IOException ex) {  

"// code to be executed if exception raised  
}"
"

+!
Iterators

n  DinerMenu uses an array

n  PancakeHouseMenu uses an ArrayList

n  Waitress class
n  Creates a dinerMenu and a pancakeMenu

n  Wants to iterate over the contents of both menus!

n  One uses an array. The other an ArrayList

n  Solution: Iterators!
n  Provide uniform iteration over a collection

n  Hides all details of how the collection is implemented

2/11/14!

4!

+!
Iterators

class ArrayList<E> implements Iterable<E> {"
"private E[] array;"
"private int capacity;"
"private int numElts;"

"
"// Returns an iterator over the menu items "
"public Iterator<E> iterator(){"
" "return new ArrayListIterator();"
"}"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
}"

class ArrayListIterator implements Iterator<E> {"
"private int curr = -1;"

"
"// Is there a next item?"
"boolean hasNext(){ return (curr < numElts-1); }"

"
"// Returns the next item"
"E next(){ return array[++curr]; }"

"
"// Optional"
"void remove(){...}"

}"

An inner class!

+!
Linked Lists

n Our second data structure!

n A linked list consists of a chain of nodes
n Add and remove nodes when necessary
n Add/remove is fast
n No more random access!

n Each node contains
n A piece of data
n A pointer to the next node

55

piece of data pointer to
next node

2/11/14!

5!

+!
Linked List (Singly linked)

head tail

3 55 25 14

piece of data
pointer to
next node

null
pointer

+!
Implementing a Linked List (on
board)

2/11/14!

6!

+!
Linked List Operations

n  Constructor

n  addFirst, removeFirst

n  get(i)

n  indexOf(e)

n  add(i,o)

n  remove(e), remove(i)

n  iterator

What is the complexity
of each?!

