
Computer Science 62

Lab 7

Wednesday, March 12, 2014

Introduction

In this lab, we will experiment with Bailey’s BinaryTree class. Begin looking at the documentation

for the BinaryTree class1. For today, pay special attention to the constructors and these methods:

value() isEmpty()

left() iterator()

right() toString()

setLeft(BinaryTree<E> newLeft) height()

setRight(BinaryTree<E> newRight)

We will use this class to construct some examples of binary search trees whose values are integers.

For a binary search tree the value contained in a node n is

• greater than all the values contained in nodes of the left subtree rooted at n, and

• less than or equal to all the values contained in nodes of the right subtree rooted at n.

By saying “less than or equal to,” we are implicitly allowing duplicate values. It is a decision that

can be changed easily.

Notice that Bailey has a class called BinarySearchTree which automates most of the operations

on binary search trees. We will not use it today because we want you to experience the joy of

manipulating trees directly.

A simple example

Draw by hand a binary search tree with 2 at the root and values 1, 3, and 4 in the subtrees. How

many different tree structures are possible?

Next, start Eclipse and create a new project for this laboratory (note that you will need to include

the BAILEY variable for this lab). Create a class called Lab07. Inside this class, write a method

1http://www.cs.williams.edu/∼bailey/JavaStructures/doc/structure5/index.html

1



to construct the tree you just drew and print it out using the toString method. You can call this

method, constructSimpleTree.

Recall that there are three constructors for the BinaryTree<E> class: no data, one data item, and

one data item with two children. If you need a BinaryTree with only one child (with a data value)

you’ll need to specify the other child as an empty tree.

Notice how the toString methods prints out the trees and in particular, the empty trees.

Inserting values

A more realistic exercise is to start with an empty tree and insert many new nodes. Write a method

insert that takes a tree and a new value, and inserts a node with that value into the tree. The

method returns the new binary tree (We need to return a tree to handle the case when we construct

a new tree.)

public static BinaryTree<Integer> insert(BinaryTree<Integer> tree,

Integer value)

There are two cases. If the original tree is empty, then we simply create a new one-element tree

and return it, effectively discarding the old tree. If the original tree is not empty, then we navigate

through it until we get to an empty subtree and replace that empty subtree with a one-element

tree. We return the original, recently modified, tree.

Test your insert method by writing a different method that (1) creates an empty tree, (2) inserts

the integers 2, 4, 1, and 3 (in that order) by calling insert, and (3) prints the resulting tree. What

happens if you insert in a different order, for example, 2, 3, 1, 4 or 2, 1, 3, 4?

Bigger trees

Now that everything is working, write a method biggerTrees that inserts 128 random integers.

Printing such a tree would not be very enlightening. Instead, use the iterator method of the

BinaryTree<E> class and print the sequence of values generated; they should appear in non-

decreasing order. The java.util.Random class will be useful for this.

Tree heights

Finally, conduct some experiments on heights of trees. Create a method called randomTreeHeights.

Inside this method, you should determine the heights of several randomly-constructed 128-node

trees and see how they compare. What is the theoretical minimum height? Do your trees ever

come close? Can you artificially create a tree with the theoretical maximum height?

Calculate the average height over 100 random trees. Is the average height closer to the minimum

or maximum?

Write the answer to these questions in the JavaDoc comments for the randomTreeHeights method.

2



What to hand in

You should export your Eclipse project, rename the folder appropriately, and then drag it into the

dropbox. If you are working with a partner, please make sure that both names are in the JavaDoc

at the top of the Lab07 class.

3


